
International Technical Support Organization

Lotus Notes Release 4.5:
A Developer’s Handbook

redbook title AA0425 10/23/96 3:25 PM Page 1

Edition Notice

First Edition (November 1996)

This edition applies to Release 4.5 of Lotus Notes.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

© International Business Machines Corporation 1996. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted rights.
Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract with IBM Corp.

Abstract

This document describes how to develop applications with Lotus Notes
Release 4.5. Lotus Notes is a distributed client/server platform that allows
you to develop applications to be shared by groups of users across a
network. The Integrated Development Environment (IDE) provided by
Notes enables the development of strategic enterprise-wide business
applications.

Part 1 covers features such as databases, forms, subforms, views, action
bars, layout regions, navigators, and agents. One chapter illustrates how to
use LotusScript to write object-oriented sophisticated applications. Other
chapters show you how to work with LotusScript Extensions, Lotus
Components, and how to use the application development features of
calendaring and scheduling. A workflow example is described in more
detail. Examples and useful hints and tips are provided throughout.

Part 2 is dedicated to tools and techniques that enable you to seamlessly
integrate an existing IT infrastructure into your Notes applications. Several
chapters take a close look at Domino, the integrated Notes/HTTP server,
and the programmability features provided by this environment. Following
this, we discuss the integration options that exploit the respective strengths
of Notes and traditional database management systems and transaction
systems. A case study illustrates the various features throughout part 2 of
the book. The last chapter discusses the Notes C++ API.

The book comes with a chart listing the LotusScript classes, methods, and
properties based on Notes Release 4.5, and a diskette containing several
sample applications.

iii

Edition Notice ii.

Abstract . iii.

Preface . xiii.

Part 1 Notes Application
Development 1.

Chapter 1 Getting Started . . . 3.
What Is Lotus Notes? 3.

Notes Is an Environment for
Application Development
Deployment 3.

Notes ADE Is Mainstream, Modern,
and Industrial 3.

Notes Is Complete 5.

Integrated Notes HTTP Server 7.

Integrated Messaging 7.

Native Calendaring & Scheduling . 7.

Wide Range of Effective
Security Features 8.

Effective Support of Mobile Users . 8.

Access to External Data 9.

Notes Is a Document Database 9.

The Messaging Infrastructure
Enables a New Class of
Application . 11.

Notes Has a Cross-Platform,
Structured, BASIC-Compatible
Programming Language 12.

You Can Leverage a Range of
Development Skills 14.

Major Enhancements of Release 4.5 14.

Chapter 2 Creating
Notes Databases 17.

Managing Your Workspace 17.

Managing Notes Databases 17.

Creating a Database 18.

Using an Existing Template 18.

Copying an Existing Database 20.

Creating a New Database 22.

Changing the Database Properties . 23.

Basics on Database Building Blocks 28.

Chapter 3 The Notes
Integrated Development
Environment 35.
Introduction . 35.

Elements of the Forms Integrated
Development Environment 36.

Main Design Window 36.

Action Pane . 36.

Design Pane . 37.

Working With the Script Editor 42.

Design Pane Properties 42.

Searching Your Scripts 45.

Exporting Script Programs 46.

Importing Script Programs 48.

Special Script Editor Features 49.

Chapter 4 Designing
Application Forms 51.
Using the Document Library Template 51.

Creating Sample Documents 52.

Contents v

Contents

A Developer's Handbook
Please note that the page numbers listed in the Table of Contents refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Using Forms . 54.

Specifying Form Properties 54.

 Giving the Form a Title 61.

Looking at Form Events 62.

 Creating a New Field 63.

Performing a Test Run 64.

Sharing and Reusing a Field 65.

Looking at Field Properties 66.

Creating Design Elements
for Subforms 72.

Removing Subforms 74.

Working With Layout Regions 75.

Creating a Layout Region 75.

Working With Collapsible Sections . . . 77.

Creating a Collapsible Section 78.

Looking at a Collapsible Section . . . 78.

Looking at the Properties of a
Standard Collapsible Section . . . 79.

Working With Tables 80.

Working With Buttons 81.

Creating a Button on the Action Bar 81.

Creating Hotspots 83.

Creating Links . 83.

Defining Text Pop-ups 84.

Creating Buttons in Forms 84.

Chapter 5 Viewing
the Database 87.
What Is a View? . 87.

Changing an Existing View 87.

Creating Views 94.

Editing the View Columns 96.

Creating and Moving Columns 101.

Using Folders . 102.

Here Again the Action Bar 103.

Looking at the Properties
of Documents 105.

Using the Navigator 106.

Navigator Objects 107.

Adding an Action to
a Navigator . 107.

A Navigator Example 108.

Creating a Navigator 109.

Adding an Action to a
Navigator Object 113.

Adding an Action Using
LotusScript . 114.

Testing a Navigator 115.

Including a Navigator in
the View Menu 116.

Chapter 6 Programming
in Lotus Notes 117. . . .
Templates . 118.

Programming in Notes 121.

Simple Actions . 121.

Formulas . 122.

LotusScript . 122.

Using LotusScript Notes Classes 124.

Notes Classes . 124.

Understanding Front-End and
Back-End Classes 124.

Class Hierarchy 128.

Using the Object Browser 131.

Event Programming With LotusScript 132.

Programmable Objects 132.

Events . 134.

Event Type and Sequence 134.

How Scripts and Formulas
Are Executed 142.

LotusScript Programming Tips
and Considerations 146.

vi Lotus Notes Release 4.5: A Developer’s Handbook

General Suggestions 146.

Use Consistent Variable Names . . . 147.

Using Script Libraries 149.

Catching Errors at Compile Time . . 149.

Improving Form Performance 149.

When to Use Formulas
and LotusScript 150.

Using the Evaluate Function
to Combine LotusScript
and Formulas 152.

Making Field Value Changes
Effective . 154.

Using Validation Formulas
and QuerySave 154.

Working With a Rich Text Item 155.

Prompting for User Input 157.

Guidelines for Presenting
Dialog Boxes Using Formulas
Versus Scripts 159.

Error Handling . 160.

Using On Error and
Resume Statements 160.

Creating an Error Handler
for Debugging 161.

Using the Debugger 161.

How to Enable the Debugger 162.

Tracing Your Programs
Without a Debugger 166.

External Tools . 168.

The Notes API . 168.

Summary . 169.

Chapter 7 Using the
LotusScript Extensions
Toolkit . 171. . . .
What Is an LSX? . 171.

Using an LSX . 172.

Using the LSX Toolkit 173.

Overview . 173.

What the LSX Toolkit Contains 174.

Considering the Toolkit Design 176.

Understanding the C++ LSX
Class Framework 180.

LSX Design Decisions 184.

Creating an LSX . 186.

Using LSX Data Types 189.

Using Data Type
Descriptions 191.

Accessing LSX Class
Method Arguments 192.

Accessing LSX Class
Property Arguments 194.

Using LotusScript
System Services 195.

Testing an LSX . 199.

The LSXTEST Tool 199.

The LSXRUN Tool 201.

Deploying an LSX . 201.

The LSX Runtime
Environment 201.

LSX Installation 201.

LSX Registration 202.

Chapter 8 Using Agents 203. . . .
About Agents . 203.

Access Control . 203.

Creating an Agent 204.

Setting Up the Agent 205.

Naming the Agent 205.

Scheduling the Agent 206.

Selecting Documents to
Be Processed 207.

Specifying What the Agent
Should Do . 207.

Summary . 212.

Contents vii

Chapter 9 Calendaring
& Scheduling 213. . . .

What Is Calendaring
& Scheduling? 213.

Calendar Views 214.

Free-Time System 216.

Resources . 218.

Programming With Calendaring
& Scheduling 219.

LotusScript . 219.

@Functions . 220.

The Calendar View 221.

Date and Time Controls 223.

Chapter 10 Notes
Workflow: An Example 225. . . .
Creating a Database Using the

Approval Cycle Template 225.

The Approval Cycle Template 226.

Using the Approval Cycle Template 227.

Performing a Workflow 238.

Approval Cycle Database: Design 248.

How Does a Form Flow? 248.

How Is the Approval Cycle
Database Organized? 249.

Chapter 11 Working With
Lotus Components 253. . . .
Overview . 253.

What Are Lotus Components? 253.

Who Are They For? 254.

Notes Application Developers 254.

End Users . 255.

Lotus Spreadsheet Component 256.

Lotus Chart Component 257.

Lotus File Viewer Component 258.

Lotus Project Scheduler Component . . 260.

Lotus Draw/Diagram Component . . . 261.

Lotus Comment Component 262.

Lotus Components
Template Builder 263.

Using Lotus Components
With LotusScript 264.

Adding Lotus Components to a
Form Using LotusScript 264.

Setting and Modifying
Properties . 266.

Using Notes/FX With
Components 269.

Notes/FX Example 270.

Linking the Spreadsheet and
Charting Components 273.

Using NotesFlow Publishing 276.

Action Publishing 277.

Using LotusScript With Lotus
Components Events 278.

Using the Lotus Components
Template Builder 279.

Creating Your Own Component . . . 279.

Creating a Distribution Pack 281.

Chapter 12 Notes
Applications and Security . . . 283. . . .
Access Control List 283.

Roles . 286.

Working With Roles 287.

Using @Functions in Roles 287.

Execution Control Lists 288.

Document Level Security 289.

Section Level Security 290.

Field Level Security 290.

Creating an Encryption Key 290.

Sending the Encryption Key
to Other Users 291.

Encrypting the Field Contents 291.

viii Lotus Notes Release 4.5: A Developer’s Handbook

Part 2 Extending the Reach . 293. . . .

Introduction 295. . . .

Chapter 13 Domino:
Architecture and
Configuration 297. . . .
Overview . 297.

The Internet and the World Wide Web:
An Introduction 297.

The World Wide Web 298.

Browsers . 298.

Internet and Web Terminology . . . 300.

Lotus Notes and the Web 300.

About the Lotus Notes Client
Web Navigator Feature 301.

About the Domino Architecture 302.

Configuring the Domino Web Server . 303.

Setting Up Your Notes Server
on the Internet 303.

HTTP Setup . 304.

Registering Web Users 309.

Starting and Stopping the
Web Server . 309.

Setting Up Security 310.

Domino Log and Cache 315.

Accessing a Domino Site 317.

Creating, Editing, and Deleting
Documents From the Web 317.

Searching a Domino Site 318.

Reading and Responding to
Notes Mail . 319.

Chapter 14 Domino:
Creating Web Applications . . 321. . . .
Setting Up Your Web Site 321.

About Web Applications 321.

Introduction to Lotus
Internet Applications 322.

Web Site Organization 327.

Designing Your Home Page 329.

Web Application Design Elements 330.

Web Forms . 330.

Web Views . 336.

Navigators . 337.

Agents, LotusScript, and Actions . . 339.

@Function Formulas in
Web Applications 339.

@Commands Formulas 341.

Working With Images 341.

Working With Attachments 342.

Adding HTML to Notes Elements 343.

HTML Code Syntax 344.

Creating an HTML Text
Paragraph Style 345.

Adding HTML Attributes to
an Editable Field 345.

Adding HTML Code to a View 346.

Creating Links . 347.

Linking to Documents, Views,
and Databases 347.

 Linking to Forms and Navigators . 348.

Linking to an External Web Site . . . 349.

Domino URLs . 349.

Domino Objects 350.

Domino Actions 352.

Domino Arguments 353.

Chapter 15 Domino:
Sample Applications 355. . . .
Overview . 355.

An Application to Register Users
Over the Web 355.

Contents ix

Basic Concepts . 355.

Application Design 356.

Error Handling on Form
New Account 360.

Processing User Requests 361.

Sending Error Messages to
Web Users . 365.

Handling Password Change
Requests . 366.

Summary . 366.

Personal Agents — The Page
Minder Agent 366.

Case Study: Millennia Multimedia 370.

NotesPump . 370.

Search Site Form 386.

Agents . 389.

Chapter 16 Accessing
Relational Database
Management Systems
With Notes 393. . . .
Data Resource Access 393.

About the Database Access
Facilities . 393.

LotusScript:DataObject (LS:DO) 395.

What Is LS:DO? 395.

When to Use LS:DO 398.

What Is ODBC? 398.

Using ODBC Connections 399.

Difference Between LS:DO
and ODBC . 400.

Software Requirements 402.

How to Register ODBC
Data Sources 403.

USELSX Statement to
Enable LS:DO 405.

Mapping Data Types Between
RDB and Notes DB 405.

How to Trace and Debug LS:DO . . 405.

Creating Your Own LS:DO
Test Application 409.

LS:DO Class Library 415.

The Millennia Multimedia
Case Study: An Example
Program . 427.

The Millennia Multimedia
Database Schema 427.

Using @DB Functions to Access Other
Databases Through ODBC 430.

When to Use . 430.

How to Use @DB Functions 431.

Using the Oracle LSX 433.

Architecture . 434.

Object Hierarchy 434.

Using the Oracle LSX Classes 435.

ODBC Database Access Methods in
Lotus Spreadsheet Component . 441.

How to Use ODBC Database Access
Methods . 441.

Example: A Non-Interactive Query 442.

Example: An Interactive Query 444.

Chapter 17 Accessing Notes
From Relational Database
Management Systems and
Query Tools 447. . . .
What Is NotesSQL? 447.

Technical Advantages 447.

Structure . 448.

When to Use NotesSQL 448.

Functionality . 449.

ODBC Conformance Level
of NotesSQL 449.

SQL Grammar Conformance
Level of NotesSQL 450.

Software Requirements 456.

x Lotus Notes Release 4.5: A Developer’s Handbook

Mapping Resources Between an
RDBMS and a Notes Database . . 456.

Connection String 456.

Table and View 456.

Mapping Data Types Between an
RDB and a Notes Database 458.

Basic API Calling Sequences 459.

Example: Accessing Notes From
Visual Basic . 460.

Program Structure 460.

Chapter 18 High Volume Data
Transfer With NotesPump 2.0 465. . . .
About Lotus NotesPump 465.

NotesPump Enterprise Features . . . 466.

Functions . 467.

NotesPump Applications 468.

 Architecture . 469.

NotesPump Components 469.

NotesPump Server 469.

NotesPump Administrator 470.

DBMS Servers . 471.

NotesPump Installation 471.

Installation Steps 471.

Start the NotesPump Server 472.

Terminology . 473.

NotesPump Administration 475.

Configuration Documents 476.

Link Documents . 477.

Link Options Documents 478.

Activity Documents 478.

Defining Common Areas of
Activity Documents 479.

Admin-Backup Activity Document . . . 481.

Admin-Purge Log Activity Document 482.

Direct Transfer Activity Document . . . 482.

Polling Activity Document 484.

Replication Activity Document 485.

DPROPR Activity Document 488.

 Scripted Activity Documents 490.

Using NotesPump Extensions 491.

LotusScript Extensions 492.

Example: Scripted Activity 496.

Activity Field Matching 503.

Administrator Views 504.

Log Views and Documents 504.

NotesPump Agents 505.

About Scheduling . 506.

Running an Activity From
the Command Line 506.

Common Gateway Interface
for NotesPump 506.

Chapter 19 Accessing
Transaction Systems
Using MQSeries 509. . . .
About MQSeries . 509.

Where Does Lotus Notes Fit? 510.

Transactional Overview 511.

Applications for MQLink 512.

Technical Advantages 512.

Terminology . 513.

MQSeries Link and Link Extra for
Lotus Notes and CICS Link
and Link Extra for Lotus Notes . 515.

Overview . 515.

MQSeries and CICS Link for
Lotus Notes . 516.

Application Development 516.

Transaction Flow 517.

MQSeries and CICS Link Extra
for Lotus Notes 521.

Application Development 522.

Contents xi

Managing the Link Extra Process . . 522.

A Typical Host-Initiated
Transaction . 523.

The MQSeries Link LotusScript
Extension (MQLSX) 524.

Setting Up Your MQLSX
Environment 525.

MQLSX Classes 525.

Using the MQLSX 526.

Example: MQSeries Link for
Lotus Notes Extension 529.

Chapter 20 Accessing Notes
With the Notes C++ API 531. . . .
Overview . 531.

Types of Applications 532.

Contents of the Notes C++
API Distribution 532.

The Notes C++ API Architecture 533.

Built-In Data Types 533.

Common Classes 534.

C++ Class Hierarchy 534.

Error Handling 537.

A Guided Tour Through the API 538.

Setting Up an Application Profile . . 538.

Working With Databases 542.

Working With Documents 546.

Working With Views and Folders . 550.

A Closer Look at Rich Text Items 554.

Creating Notes Server Add-In Tasks . . 558.

What Are Server Add-In Tasks? . . . 558.

Program Structure of an
Add-In Task 559.

Example: A Server Add-In
to Compact Databases 562.

Appendix A Special Notices 565. . . .

Appendix B Related
Publications 567. . . .
International Technical Support

Organization Publications 567.

Related Publications 567.

How To Get ITSO Redbooks . 569. . . .
How IBM Employees Can Get

ITSO Redbooks 569.

How Customers Can Get ITSO
Redbooks . 571.

Index . Index-1

xii Lotus Notes Release 4.5: A Developer’s Handbook

Preface

This document describes how to develop applications with Lotus Notes
Release 4.5.

Part 1 covers features such as databases, forms, subforms, views, action
bars, layout regions, navigators, and agents. One chapter illustrates how to
use LotusScript to write object-oriented sophisticated applications. Other
chapters show you how to work with LotusScript Extensions, Lotus
Components, and how to use the application development features of
calendaring and scheduling. A workflow example is described in more
detail. Examples and useful hints and tips are provided throughout.

Part 2 is dedicated to tools and techniques that enable you to seamlessly
integrate an existing IT infrastructure into your Notes applications. Several
chapters take a close look at Domino, the integrated Notes/HTTP server,
and the programmability features provided by this environment. Following
this, we discuss the integration options that exploit the respective strengths
of Notes and traditional database management systems and transaction
systems. A case study illustrates the various features throughout part 2 of
the book. The last chapter discusses the Notes C++ API.

The book comes with a chart listing the LotusScript classes, methods, and
properties based on Notes Release 4.5, and a diskette containing several
sample applications.

How This Document Is Organized

The document is organized as follows:

Part 1: Notes Application Development

Chapter 1, “Getting Started”

This chapter provides an overview of Lotus Notes and the Notes
application development environment. It also lists the major
enhancements of Notes Release 4.5.

Chapter 2, “Creating Notes Databases”

This chapter describes how to create new databases, or to use existing
databases and modify them as needed.

xiii

Chapter 3, “The Notes Integrated Development Environment”

This chapter takes a close look at the integrated application
development environment which allows you to create a variety of
elements used in a Notes application.

Chapter 4, “Designing Application Forms”

This chapter illustrates how to design application forms based on the
Document Library template provided with Lotus Notes.

Chapter 5, “Viewing the Database”

This chapter covers the structure of views, folders, and navigators.

Chapter 6, “Programming in Lotus Notes”

This chapter provides detailed information on the programming
features available in Notes, in particular LotusScript.

Chapter 7, “Using the LotusScript Extensions Toolkit”

This chapter gives an overview of LotusScript extensions and
introduces the toolkit that allows you to develop your own extensions.

Chapter 8, “Using Agents”

This chapter describes how to create an agent for task automation.

Chapter 9, “Calendaring & Scheduling”

This chapter discusses how to use the new LotusScript classes and
@Functions related to Calendaring & Scheduling. It also covers how to
create a view using the new calendar view type.

Chapter 10, “Notes Workflow: An Example”

This chapter gives an example of the Notes workflow capabilities by
taking a close look at the Approval Cycle template provided with
Notes.

Chapter 11, “Working with Lotus Components”

This chapter shows you how to work with Lotus Components. Topics
such as creating components using LotusScript, Notes/FX, and
NotesFlow publishing are covered.

Chapter 12, “Notes Applications and Security”

This chapter introduces Notes security from an application developer’s
viewpoint.

xiv Lotus Notes Release 4.5: A Developer’s Handbook

Part 2: Extending the Reach

Chapter 13, “Domino: Architecture and Configuration”

This chapter discusses the Domino architecture and its elements.

Chapter 14, “Domino: Creating Web Applications”

This chapter introduces the Lotus Internet applications and describes in
detail the Web application design elements.

Chapter 15, “Domino: Sample Applications”

This chapter takes a close look at three examples for using Lotus Notes
with the Internet.

Chapter 16, “Accessing Relational Database Management Systems with
Notes”

This chapter illustrates tools and techniques that can be used to access
relational data resources from a Notes application.

Chapter 17, “Accessing Notes from Relational Database Management
Systems and Query Tools”

This chapter covers NotesSQL.

Chapter 18, “High Volume Data Transfer with NotesPump 2.0”

This chapter provides information on NotesPump which is used to
transfer data between Notes databases and external databases on
different types of Database Management Systems.

Chapter 19, “Accessing Transaction Systems Using MQSeries”

This chapter describes the MQSeries Link for Lotus Notes product line.

Chapter 20, “Accessing Notes with the Notes C++ API”

This chapter documents how to use the Notes C++ API to access Notes
facilities.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Cambridge
Center.

Marion Hawker is a Lotus Notes Specialist at IBM’s ITSO at Lotus
Development, Cambridge, Massachusetts. She manages projects whose
objective it is to produce redbooks on all areas of Lotus Notes, in particular
the Notes application development features. Before joining the ITSO in
1995, she provided technical support for Lotus Notes and other products on
a European basis. (Marion_Hawker@vnet.ibm.com; Notes e-mail: Marion
Hawker/CAM/Lotus@Lotus)

Preface xv

Joe Arteaga is a consultant in the IBM Lotus Notes Practice and is based out
of Toronto, Canada. His main role is the development and deployment of
strategic solutions which are based on Lotus Notes. Joe has 10 years of
industry experience, working with IBM and as a freelance consultant in the
areas of workgroup computing and Client/Server. (jarteaga@vnet.ibm.com)

Gerald Krause is based at the IBM European Networking Center in
Heidelberg, Germany, department of telecooperation. Currently, he focuses
on the design and development of advanced technologies for workflow
systems. Previously, Gerald worked on industry and research projects in
the areas of distributed applications and their management.
(krauseg@vnet.ibm.com)

Dave Morrison works for IBM in the United Kingdom. As a Lotus Notes
application development consultant working for the world-wide Lotus
Notes Service Line, he and his team are responsible for providing solutions
to IBM customers in all aspects of Lotus Notes consultancy.
(gbibmdam@ibmmail.com)

Hiroki Nakamura works for IBM Japan, Systems Engineering. He provides
application development consultancy as well as training for systems
engineers and customers of IBM Japan. (hnakamura@vnet.ibm.com)

Reinhold Strobl works for IBM Austria. As a member of the IBM Personal
Systems Support and Services Center he provides support to customers in
all aspects of application development. Before joining the IBM support
organization he was a software designer and developer working out of an
IBM software development laboratory. (rstrobl@vnet.ibm.com)

A number of people have provided support and guidance throughout the
production of this book. In particular, we would like to thank Alex Neihaus
from Notes Product Marketing, Lotus Development at Cambridge. In
addition, we would like to thank the following people (in alphabetical
order):

Ned Batchelder, Lotus Cambridge

Donna Carvalho, Lotus Cambridge

Angela Finney, Lotus Cambridge

Graphic Services, Lotus Cambridge

Justine Grose, IBM UK

Kevin Lynch, Lotus Cambridge

Robert Merenyi, Lotus Cambridge

Michele Pennell, Lotus Cambridge

Glen Salmon, Lotus Cambridge

Lauren Wendel, Lotus Cambridge

xvi Lotus Notes Release 4.5: A Developer’s Handbook

Comments Welcome

We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the
following address: redbook@vnet.ibm.com.

Your comments are important to us!

Preface xvii

Part 1
Notes Application Development

Chapter 1
Getting Started

What Is Lotus Notes?

Lotus Notes® is a distributed client/server platform that allows you to
develop applications containing data to be shared by groups of users across
a network. It is comprised of a set of document databases that reside on top
of a messaging infrastructure. Leveraging the distributed storage and
messaging features, the Integrated Development Environment (IDE)
provided by Notes™ enables Rapid Application Development and
Deployment (RADD) of strategic enterprise-wide business applications.

Notes Is an Environment for Application Development Deployment

Lotus Notes Release 4.5 contains a powerful, distributed,
document-oriented database that combines information storage with
enterprise-wide communications, collaboration and coordination
capabilities. Using the native set of application development tools, you can
create business applications that store and route information objects. Notes
contains a document-oriented, distributed database that opens a new world
of sophisticated business applications based on the interchange of
information, not just data.

Notes ADE Is Mainstream, Modern, and Industrial
Notes is comprised of a document database that is integrated into an
enterprise messaging infrastructure. The integral Notes Application
Development Environment (ADE) enables rapid development of strategic
business applications using these database and messaging services.

The Notes ADE is fast and efficient, as well as easy to learn. Notes offers
two compelling advantages for client/server application development:

It is cross-platform, supporting a wide range of operating and network
systems as well as hardware platforms.

3

Notes applications are self-deploying. Replication is a key Notes
function that synchronizes client and server databases. Since Notes can
use the replication process to distribute design element changes, Notes
uniquely offers the industry’s only seamless client/server
cross-platform deployment capability.

The Notes ADE offers developers architectural solutions to many of the
challenges faced by client/server application development and deployment.
Notes Release 4.5 achieves this using groundbreaking improvements in
application development and deployment. Notes’ ADE is:

Mainstream

Notes applications will be used by everyone in your company since
the applications are easy to create and maintain, and can be readily
deployed across any network infrastructure.

Notes developers work in the same Notes environment as end users.
This means that application design and development are iterative and
can easily include end users in the design and development process.
This reduces the time it takes to create Notes applications and ensures
that the delivered application meets end users’ needs.

Modern

Notes represents a new generation of technology for the development
of network-centric applications. The Notes ADE provides the latest
development technology such as object-oriented tools and high-level
APIs. LotusScript® is a structured programming language that
provides a powerful programming environment in Notes. This allows
for development of sophisticated and complex applications. Notes also
contains capabilities that allow developers to integrate Notes with their
existing relational database applications.

Notes is also modern because it permits effortless client/server
deployment. Notes applications are isolated from platform and
operating systems environments. Any application developed on one
Notes client platform will run — without recompiles or switches — on
any other Notes client or server platform. Now developers can create
applications on UNIX for the Apple Macintosh, or on Windows 95
for OS/2.

Industrial

Notes has been available since 1990. This is the fourth release, which
incorporates the experiences and requirements of tens of thousands of
developers over time. Notes is a tried and true application development
platform, having successfully delivered compelling network
applications to millions of end users.

4 Lotus Notes Release 4.5: A Developer’s Handbook

The databases you develop can be dedicated to a specific group of
users, to a department, or they can be a strategic, enterprise-wide
application, providing both communication flow and an information
warehouse.

From Notes Release 4.0 you now have support for databases up to four
gigabytes (up from one gigabyte in Release 3.x) and many more users
per server than before.

Note Each database can be up to four gigabytes. You can have
multiple databases on the same server.

All the Notes Release 3 and Release 4 applications that you have
developed will run unmodified in Release 4.5. Its messaging
infrastructure uses your existing network. Your Notes development
skills are preserved. The addition of LotusScript leverages widespread
knowledge of the BASIC language.

Notes Is Complete
Notes has a wide set of robust built-in features that are focused on
groupware application development:

Multi-platform
One of the key features of Notes is its ability to run on numerous platforms,
both for the server and the client workstations. This is key to the ability to
communicate not only within your own organization but also with your
suppliers and customers: think of the flexibility you can achieve with Notes
because the decisions about applications are now separated from the
decisions about corporate infrastructure and operating systems.

The Notes Server can run on the following operating systems:

Microsoft Windows NT

Microsoft Windows 95

IBM OS/2 Warp 4.0

IBM OS/2 Warp 3.0 and OS/2 2.1

UNIX: IBM AIX, Sun Solaris, SCO, HP/UX

The Notes Client can run on the following platforms:

Microsoft Windows NT, Windows 95 and Windows 3.1 or 3.11

IBM OS/2 Warp 4.0

IBM OS/2 Warp 3.0 and OS/2 2.1

Apple System 7.x

UNIX: IBM AIX, Sun Solaris, SCO, HP/UX

Chapter 1: Getting Started 5

Notes supports the following Network Operating Systems (NOS):

Novell NetWare

IBM LAN Server

Microsoft LAN Manager

Microsoft NT Advanced Server

PATHWORKS

Banyan VINES

AppleTalk

Notes supports the following Network Protocols:

NetBIOS

NetBEUI

TCP/IP

IPX and SPX

AppleTalk

Any combination of the above

The following figure gives an overview of the supported platforms and
network protocols:

Not only can Notes run your applications on different operating systems,
but the Notes application itself also handles all the cross-platform aspects
that developers have to deal with. This means:

You do not need to know different sets of operating system APIs

You do not need to port the code from one platform to the other

6 Lotus Notes Release 4.5: A Developer’s Handbook

You do not need to recompile any source code

You do not need to worry about communication aspects across
heterogeneous networks

You have a wholly integrated deployment environment for completed
applications, no matter the target operating system, network, server, or
client.

The result is increased productivity, which is also supported by the
following features:

A common user interface

The same development tools and language, both for the @Functions
and LotusScript

Platform-specific features can, of course, be fully exploited.

Integrated Notes HTTP Server
Lotus Notes has a powerful, integrated HTTP server that allows you to
create and manage Web sites directly from within the Notes environment.
This allows you to leverage the existing power of the Notes ADE to publish
documents and interact with customers over the Internet.

Lotus Notes comes with the Net.Action tool that allows you to set up and
implement your first Web site with the minimal of effort, all from within
Notes.

Integrated Messaging
Notes applications benefit from the integrated messaging infrastructure.
They can route documents to selected users or groups of users on the Local
Area Network (LAN) or Wide Area Network (WAN). Those documents can
be used as notifications, reminders or requests for approvals.

Again, developers do not need to know the semantics of the underlying
messaging protocols (VIM or MAPI) and can stay focused on the business
solution.

Native Calendaring & Scheduling
New to Notes 4.5 is native calendaring and scheduling modeled on the
Lotus Organizer user interface. In your mail file you now have the ability
to book meetings with other Notes users, check their availability, reserve
rooms and resources, create personal appointments and set alarms. With
calendaring and scheduling comes a new programmable view based on
a calendar-style appearance that can be added to any new or existing

Chapter 1: Getting Started 7

database. This view can be displayed in one of four different formats:
2 days, 1 week, 2 weeks or 1 month. It can contain any information related
to a date and time.

Wide Range of Effective Security Features
In addition to the security features available for server access, Notes
provides developers with multiple levels of security that can be built into
their Notes applications:

At the server level, public and private key authentication ensures that
only authorized users can access a server.

At the database level, the database administrator can assign different
access levels to users or groups of users in the Access Control List
(ACL). The end user can also decide to encrypt the local replica of
the database.

At the workstation level, new to Release 4.5 are Execution Control Lists
(ECLs). Now the administrator and user have full control over what
level of access a Notes application has to their workstation’s resources.

At form and view level, the developer can restrict the use of a
particular form or view.

At document level, the owner of the document can restrict the
access to the document to specific users or groups of users, both
in read-only mode or in update mode.

At field level, the developer can implement automatic encryption. The
end user can also encrypt fields on a document basis.

Effective Support of Mobile Users
Notes provides mobile users with seamless access to the data of the
databases stored on the Notes servers and clients. Whether they are at
home, in a hotel or in a business location, mobile users use replica copies of
Notes databases. They can connect to the server through modems and can
reach and update the information in the same way as their colleagues who
are connected to the network.

Mobile users can also work completely in standalone mode and then simply
exchange data with the server at a time of day when the telecommunication
costs are low.

Release 4.5 of Notes now gives mobile users the ability to create a minimal
copy of the Public Name and Address book so mail can be addressed and
encrypted correctly while away from the office.

8 Lotus Notes Release 4.5: A Developer’s Handbook

Access to External Data
Notes allows for easy access to non-Notes data that are stored on the
workstation, on the LAN or even on a mainframe if gateways are installed.
You can access that data using a variety of means:

Object Linking and Embedding (OLE), with OLE compliant
applications such as Lotus Windows SmartSuite and Microsoft Office
products.

Notes/FX 2.0 builds on earlier versions of Notes/FX by allowing the
bi-directional transfer of data, properties, and methods between
Notes/FX 2.0-enabled OLE 2.0 applications and Notes Release 4.5
applications. For example, it is now possible to pass methods to
Notes/FX 2.0 applications, which makes it easier to display the Notes
action bar within the Notes/FX 2.0-enabled application.
This also allows for a more seamless integration of desktop applications
within a Notes Release 4.5 workflow application.

@DBCommand, @DBLookUp and @DBColumn functions to relational
databases.

Open Data Base Connectivity (ODBC) drivers to relational databases.

LotusScript Data Object (LS:DO).

LotusScript eXtensions (LSX) to relational and transaction databases.

Notes Is a Document Database
Notes is comprised of databases which contain documents. In Notes,
a document is defined as an object containing text, graphics, video, or
audio objects or any other kind of “rich text” data. Notes databases are
semi-structured records consisting of the following basic design elements:

Forms

Notes developers and users can create forms to provide a structure for
information entry and storage in the document.

Subforms

A subform is an object within a form that can be reused across
applications. A logo is a simple example. Subforms can also be used to
contain logic and processing that should apply across all portions of the
Notes application.

Collapsible sections

You can also create sections within a form that can be expanded or
collapsed depending on the need to view that particular piece of
information. For example, you may create a form that has an
explanatory section which can be collapsed after it has been read.

Chapter 1: Getting Started 9

Fields

A field is that part of a form containing a single type of information.
There are several types of Notes fields, including rich text, text,
number, time, and calculated.

Views

Views are user-defined ways of looking at information in a database.
They are roughly analogous to reports that might be created in a
relational database, but with far more flexibility. Different views may
be created based on the reporting and viewing requirements of the
application. With Notes 4.5 there are two different types of views, the
Standard Outline and the Calendar view. The Standard Outline is the
traditional type of Notes view that displays information from
documents in columns. The Calendar view displays time and date
driven information in a diary format.

Developers can allow users to dynamically sort the columns in a view.
Developers may also customize the graphical appearance of views.

Navigators

Navigators are a graphical “table of contents” for a database. For
example, the navigator for a regional sales database might be a map of
that region. By using navigators, it is possible to provide your users
with a business-specific user interface for a Notes application. For
example, users can click on a set of maps to find documents concerning
a specific region or territory.

Remote and mobile use of a document-oriented database means that users
throughout the network may be creating and sharing the information in
Notes documents. Notes ensures that all users have the same and latest
version of a document through the process of replication. Replication
ensures that all copies of a Notes database are synchronized over time.
Replication is a fundamental feature of Notes that allows not only for the
synchronization of data, but also of applications.

Notes databases store information, not just discrete data as stored by other
types of databases. Relational database management systems (RDBMSs)
store data in a highly structured format. Notes databases allow for the
creation of compound documents that can include both structured and
unstructured information.

Notes and RDBMSs Are Complementary
Notes is not a relational database. This is a key distinction since Notes does
not provide capabilities usually associated with RDBMSs, like referential
integrity and distributed transaction support. However, Notes and
RDBMSs are not mutually exclusive; in fact, they can exchange data and
thereby extend each other, creating the possibility for very powerful

10 Lotus Notes Release 4.5: A Developer’s Handbook

applications. For example, a manager might use Notes to create a monthly
business report. Part of that report would pull in figures from a monthly
expense database using an interchange tool.

Here are two key differences between an RDBMS and Notes:

Real-time access to data.
While the RDBMS keeps a unique version of the data at a given time,
Notes may have different versions of the documents in databases
distributed across the network. This is why Notes is best suited for
applications where the immediate availability of current data is not a
strict necessity.

Locking a record or table.

A Relational Database Management System can lock a record or table
while the user reads or updates the data. This is not supported by
Notes. Since a Notes database can be distributed across workstations
and networks, it is possible that different users may edit the same
document at the same time. However, Notes can handle the replication
conflicts. Properly designed Notes applications rarely suffer from the
lack of a locking mechanism as this is a facility unique to
transaction-oriented RDBMSs.

The LotusScript:Data Object (LS:DO) supplied with Notes Release 4.5 is one
available data integration method. LS:DO objects can access any database
for which an Open Data Base Connectivity (ODBC) driver exists. Accessing
a database consists of three steps: making the connection, specifying a
query, and getting values from the result set. LS:DO has three object classes
that relate to these functions. The LS:DO can be used on both Notes clients
and servers.

In addition, there is a wide variety of other data integration tools available
from Lotus and its Business Partners, which provide server-to-server data
interchange interfaces for relational databases such as Sybase, Oracle, and
DB2/2. Lotus NotesPump™ is an example of server-based, scheduled data
interchange. The MQSeries™ Link for Lotus Notes allows integration
between transaction systems such as CICS and IMS/DC and the Notes
object store.

The Messaging Infrastructure Enables a New Class of Application
Notes databases are animated by the messaging infrastructure. Information
is not just stored in or retrieved from databases in a bi-directional exchange
between user and application. Database information can be routed between
users or even other databases. The Notes messaging infrastructure consists
of a transport back-end that runs on almost any wiring topology or network
operating system. The messaging transport enables enterprise-wide
applications such as:

Chapter 1: Getting Started 11

Workflow applications

Workflow applications automate the task of managing information
within workgroups. For example, a proposal-writing workflow
application would let users write a proposal then route a request for the
reviewer to review and make comments within the document. When
the proposal is updated, another request would be sent out to ask for
sign off on the final document.

Forms-routing applications

A forms routing application would focus on sending a form for a
specific action. For example, a travel authorization application would
send the travel form to the appropriate manager for electronic
approval.

Messaging-reliant applications

Some applications may be focused almost entirely on the routing of
messages. A scheduling application would manage the routing of
messages to set the time for a meeting.

Notes Has a Cross-Platform, Structured, BASIC-Compatible
Programming Language

Notes comes with many types of design elements which are used to create a
range of application types. The Notes Integrated Development
Environment (IDE) is the single interface to all of the Notes application
design elements. You need to learn how to use the IDE only once to access
all Notes design features. The IDE displays a three-pane work window. The
design pane in the top left half shows the form or view that is being created.
The smaller action pane on the right lists available actions. The programmer
pane below is where the developer creates the code. Here is an example of
the IDE three-pane work window:

12 Lotus Notes Release 4.5: A Developer’s Handbook

Notes design elements include:

Forms and Views

Developers create forms and views as the basis of Notes application
development. A technically sophisticated user can also create forms and
views for a database with relative ease. These are the most simple, and
fundamental, design elements.

Simple Actions

Simple actions are useful precoded “units of work.” An example is
“Send Newsletter Summary” which, when combined with the full-text
search capability of the Notes database, allows messages containing
document links to be sent to any number of users. Simple actions
combine Notes functionality into elements that can be used in any
Notes application.

LotusScript

Developers can use LotusScript to program sophisticated applications.
LotusScript is a superset of the familiar BASIC language. Key
enhancements over standard BASIC include object-orientation and
extension for event-driven environments.

LotusScript is also multi-platform. Notes applications that contain
LotusScript run on all Notes Release 4.5 clients and servers, no matter
which operating system the application was originally developed on.

The LotusScript programming environment has a script editor,
debugger, and variable/property inspector.

Notes Release 4.5 provides access to the Notes Object Model, which is a
set of classes and their associated methods, properties, and events that
you can access from the Script editor window.

The Object Model can be browsed in the Script editor using the
integrated browser. The browser provides a listing of the following
categories of components: Notes classes, Notes constants, Notes
subroutines and functions, Notes variables, and the LotusScript
language. You can select a component from the browser list box, and
open up component categories by clicking the arrows.

In Release 4.5 there are new events, in addition to the usual open and
close events, that can be captured to support the drag and drop
functionality of the calendar view.

RegionDoubleClick QueryPaste

QueryOpenDocument PostPaste

QueryRecalc QueryDragDrop

QueryAddToFolder PostDragDrop

Chapter 1: Getting Started 13

Formulas and @Functions

Formulas consist of variables, constants, @Functions, operators,
and keywords. @Functions are used to perform specific tasks
within Notes. For example, @Created displays the create date of a
document. @Round (number) rounds the designated number to the
nearest whole number. There are over 150 @Functions available to
applications developers.

Design Templates

Notes comes with a set of design templates for the most common
business applications. Using these templates can save significant
development time and money.

Navigator and HotSpots

The Navigator allows advanced developers to create a graphical “table
of contents” for a database. Navigators can contain HotSpots which
initiate actions.

Actions

The user interface contains an Action Bar which displays the predefined
or customized action buttons that developers choose to incorporate into
the application. System-provided actions include Print, Send, and
Close. Customized actions are programmed by the developer and can
trigger more sophisticated processing and logic. Customized actions
may be created using LotusScript or the macro language.

Agents

Agents, which are similar to macros, are created to automate time
or event-driven processes. You identify the name, the event trigger,
documents to act on, and the action itself to create a simple agent.

You Can Leverage a Range of Development Skills
The beauty of the Notes ADE is that a range of application design elements
is available to everyone from sophisticated users to highly experienced
programmers. Applications can be as simple or sophisticated as the need
demands and resources provide. Companies without a lot of IS support can
still develop useful applications.

Major Enhancements of Release 4.5
In the following chapters, we will go through the different steps that are
needed to design and develop an application using Notes Release 4.5. We
will not cover the Release 4.5 server aspects except when it has implications
to the design of the database you develop.

14 Lotus Notes Release 4.5: A Developer’s Handbook

To give you an early flavor of the features that have been added to Release
4.5, here is an overview of just some of the new features:

User Interface
Background bitmaps

3D Text

Colored tables

Date and Time controls

Calendaring & Scheduling
Allows native Notes calendaring and meeting scheduling with other
users

Free-Time database

New calendar view style

Two day, one week, two weeks, one month formats

New calendar time controls

Enhanced IDE
Context-Sensitive help from the browser

Color and font support for LotusScript keywords

Search and Replace in the IDE

LotusScript
Support for LotusScript 3.1 new commands

Script Libraries

New Notes classes for NotesForm, NotesName, NotesDateRange,
NotesInternational, NotesTimer, NotesUIDatabase, NotesUIView

Updates to existing Notes classes, including:
NotesUIDocument.EditDocument, NotesAgent.Run,
NotesDatabase.DelayUpdates, NotesDocumentCollection.FTSearch and
NotesDocumentCollection.StampAll

Database-level LotusScript modules

Import/Export of LotusScript from the IDE

New @Functions
Additional functions for the @function fans

Security Enhancements
Workstation security with Execution Control Lists (ECLs)

Chapter 1: Getting Started 15

Internet Enhancements
Integrated Notes HTTP server

Personal Web Client including Web Ahead and Page Minder agents

Background bitmaps on forms

Java support

Net.Action — Internet site creation tool

16 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 2
Creating Notes Databases

This chapter describes how to create and manage Notes databases
which are the basic entities of Notes application development. The design
elements that a database is made up of are summarized in this chapter and
expanded on in the following chapters.

Managing Your Workspace

The Notes workspace is made up of several pages or folders where the
Notes databases are displayed as icons. For each page of the workspace,
you can specify a title and a color.

As a default, the last tab is assigned to the Replicator, which allows you to
manage replication while working away from the office. You cannot rename
the Replicator tab and you cannot delete that page.

One of the features of Notes Release 4 is its sensitivity to context. You are
very often just one mouse-click away from the properties of the object you
are working on. That is true for all design elements: Fields, Buttons,
Attachments, Forms, Columns, Views, and Databases.

Managing Notes Databases

What Is a Notes Database?
A database is a collection of related information stored in a single file.
The database can represent a small amount of documents used only by
a few people, or it can be an enterprise-wide database containing thousands
of documents. The upper limit of a database is four gigabytes of data. Every
Notes application uses at least one database. Applications of a more
complex nature use several databases. For example, a workflow application
may route information between databases on one or more servers.

17

Creating a Database

There are different ways of creating a database. You can:

Use an existing template

Use an existing database

Create a new database

Once the database is created, you can still modify most of the settings using
the Database InfoBox. The InfoBox gives you access to more options that we
will cover later in this chapter in the section “Changing the Database
Properties.”

Using an Existing Template
Notes Release 4 provides a series of written applications that can be used
or customized for your own needs. Although there are many types of
popular application templates, they are designed to reveal the underlying
technology and development capabilities within Notes Release 4. Their
main intent is not to be “out-of-the-box” applications.

If your application is identical with, or similar to, an existing template
provided with Notes, the most convenient way to create a new database
is to use the template as your starting point. Most of the design work has
already been done for you. The design elements of the individual templates
can easily be copied and pasted into your custom applications.

Listing Available Templates
To see the list of available templates:

1. Choose File - Database - New. The list box on the New Database dialog
box lists several templates.

Tip The shortcut is CTRL and N.

2. Click the Show advanced templates check box. The list box at the
bottom of the list displays additional templates. The templates listed
are stored on your local workstation.

3. Select any template you are interested in.

4. Click the About push button to display the database help document.
It summarizes what the database can be used for.

To see additional templates stored on a server:

5. Click the Template Server push button.

6. In the Server field, select the server you want to access. Additional
templates are listed.

18 Lotus Notes Release 4.5: A Developer’s Handbook

Creating the Database
Follow these steps to create the database:

1. Decide if the database will reside on your local workstation or on a
server so that it can be used at once by several users.

2. In the Title field, specify a meaningful title.

3. In the File Name field, specify a file name for the database. You can
also take the file name that Notes provides automatically based on
the database title.

Note The extension of a database file is NSF. The extension of a
database template file is NTF. The database file extension cannot be
changed once the database has been created. It must be unique on
the workstation or the server where it is created.

The following figure gives you an example of a completed New
Database dialog box:

4. If the database is local, you can encrypt it. This is useful if the database
contains confidential data, or if your users have laptops that they will
take outside their business locations.

To specify encryption, click the Encryption push button. Specify the
appropriate level of encryption. The following figure shows what you
can do:

Chapter 2: Creating Notes Databases 19

5. If you want to keep the database within a predefined size, click the Size
Limit push button found on the New Database dialog box, and select
the appropriate size.

Note The default size is one gigabyte.

Notes will warn you or the administrator (if the database is on the
server) when the size of the database gets close to the specified limit.
Make sure that the database size you specify is correct as you will not
be able to change this value later on.

The Size Limit box looks like this:

6. If you want your new database design to stay synchronized with the
design template, click the Inherit future design changes check box on
the New Database dialog box.

Copying an Existing Database
Copying a database is similar to starting from a template, except that you
will almost certainly want to change part of the design.

Listing Available Databases
To list the available databases:

1. Choose File - Database - Open.

Tip The shortcut is CTRL and O.

2. If required, specify the appropriate server name in the Server field to
list additional databases.

3. Click the About push button to browse the Help document of the
database.

4. Click the Add Icon push button to add the database to your workspace.

Creating the Database
To create the database:

1. On your workspace, select the database icon you want to copy.

2. Display the database pop-up menu by clicking the right mouse button.

20 Lotus Notes Release 4.5: A Developer’s Handbook

3. Choose Database Properties.

4. Choose the Design tab. Make sure that the InfoBox shows that the
design is not hidden. It should look like this:

5. Close the InfoBox.

6. Keep the database selected.

7. Choose File - Database - New Copy.

8. Select Local as the server name if you want to store the database on
your local workstation. Select a server name if you want to store the
database on a server so that several people can access the database.

9. Type a title for the database.

10. Type a file name with extension NSF for the new database.

Note The file name cannot be changed through Notes once the
database is created. It must be unique on the workstation or server
where the database is created.

11. Click the Database design only option button since you do not want to
copy the documents that are stored in the database.

12. Deselect the Access Control List check box because it could prevent you
from modifying the database design in the future.

Note The access you have to the copy of the database depends on the
access you have to the original database.

Chapter 2: Creating Notes Databases 21

The following figure gives an example of the Copy Database dialog box:

You can optionally select the following two features:

13. Optionally, you can select to encrypt the database if it is a local
database. This is useful if the database contains confidential data, or if
your users have laptops that they use in public environments.

To encrypt the database, click the Encryption push button and select
the appropriate encryption level.

14. Optionally, you can predefine the database size. Click Size Limit and
specify the appropriate size.

Note The default size is one gigabyte. Notes will inform you or the
administrator (if the database is on the server) when the size of the
database gets close to that limit. Make sure that the database size you
specify is correct as you will not be able to change this value later on.

Creating a New Database
If no template or existing database meets your requirements, you can create
a completely new database. This means that you will have to create all the
design elements, such as forms, views, and fields. However, you can
always copy existing elements from other databases and paste them into the
new database.

1. Choose File - Database - New.

2. Type a title in the Title field.

3. From the list of available databases displayed at the bottom of the
window, choose the Blank option.

4. Click OK. The new database has been added to your workspace.
The database view is displayed. You are ready to start the design of
the database.

For more details on how to design a database, refer to the chapters covering
Forms and Views respectively.

22 Lotus Notes Release 4.5: A Developer’s Handbook

Changing the Database Properties
The following describes how you can change the properties of a database.

Displaying the Database Properties
To display the database InfoBox:

1. Display the database pop-up menu by clicking the right mouse button.

2. Choose Database Properties.

Tip You can also click the following InfoBox SmartIcon to display the
database properties InfoBox.

Specifying the Database Type, Replication, and Encryption
The Basics tab contains information on the database, such as its title, name,
location, the replication settings and replication history. The Basics tab
looks like this:

1. To set the Database type, you can select one of the following values:

Standard: Notes database used most of the time.

Library: A database with type Library is generally created from the
Database library template. It is used to record and store information
about the databases located on a Notes server or on a workstation.

Chapter 2: Creating Notes Databases 23

If it is located on the server, it contains a list of public databases.
This provides an easy way for users to browse the list of databases
available to them.

Personal Journal: It allows you to store personal information. This
type of database contains local personal information. It has limited
design elements and is meant for individual use.

Address Book: Creates a database based on the Notes Name and
Address Book format.

Multi DB Search: Is used to specify a database type of Search
Through Multiple Databases which uses the SRCHSITE.NTF
template. This type of database is used to configure searches among
databases that have been designated to participate in Multi Database
indexing by selecting the appropriate option on the Design tab of the
database InfoBox.

2. Click the Encryption push button to display a window that enables
you to specify encryption for the local version of the database.

Displaying General Database Information
1. Click the Information tab to display some general information, such

as the size of the database and the number of documents stored.

2. Click the User Activity push button to display information related to
user activity.

The Information tab of the InfoBox looks like this:

24 Lotus Notes Release 4.5: A Developer’s Handbook

Specifying Print Options
1. Click the printer tab to specify options related to printing the

document.

2. Use the icons listed under the Header and Footer option buttons to
define the date and time, tabs and page numbering.

3. You can also select the font, size, and style.

Specifying Database Design Properties
1. Click the Design tab to display or specify information concerning the

design of the database.

The example displayed in the following figure shows that the design of
this database is not hidden. Also, the database automatically inherits all
the changes made to the template if the template that this database is
based on is modified in the future.

2. If the database you are creating is a template, check the Database is
a template check box.

3. Specify a name for the template.

4. If appropriate, select the new template to be listed as an advanced
template. This indicates that the template should only be customized by
Notes developers.

5. Deselect the List in Database Catalog and Show in Open Database
dialog check boxes if the database is located on a server, contains
sensitive data, and you do not want users to be able to list its name.

6. Select Include in multi database indexing if you want the index to be
included in Multi Database Search Database site queries.

Chapter 2: Creating Notes Databases 25

The following figure gives an example of the Design tab:

Specifying Launch Options
1. Click the Launch tab to define what users will see when they first open

the database. The dialog box looks different depending on your choice
of action in the On Database Open drop-down list.

2. Specify an option from the On Database Open drop-down list. A wide
variety of options is possible, such as:

3. If you choose one of the two Navigator options, you need to select
a navigator from the list of navigators available for the database.

26 Lotus Notes Release 4.5: A Developer’s Handbook

4. Choose the Open designated Navigator in its own window option if
you want the navigator to be displayed in a full screen. You would
typically choose this option if the navigator consists of a large map or
a workflow sketch.

5. You can specify the properties of the preview pane by clicking on the
Preview Pane Default button. You are presented with the following
choices. Click on the most appropriate for the user.

Specifying Full-Text Indexing
1. Display the Full Text tab to create, update, or delete a full-text index,

which allows for a fast retrieval of documents.

2. Specify the update frequency as required.

Minimizing the InfoBox
You can keep the InfoBox open while you are working on the design of the
database. You will notice that the contents of the InfoBox is refreshed while
you are progressing with the design.

You can also reduce the size of the InfoBox by double-clicking on its title
bar. This allows you to keep the InfoBox open. Double-clicking on the title
bar or clicking on one of the tabs will restore it to its full size.

Chapter 2: Creating Notes Databases 27

In the following example, the InfoBox is minimized and located in the
upper right-hand corner of the Notes workspace.

Basics on Database Building Blocks
Every Notes application includes at least one database. Each Notes
database contains three basic components: forms, fields and views.

In addition, icons, help documents, Navigators, agents (previously known
as Notes macros), sections, actions, formulas, and scripts play an important
role in giving an application sophisticated automation and processing
power.

For each design element of Notes, you need to define the action to be
performed. You can generally do this using the @Functions or LotusScript
programs to build functional flow between the user and the design
elements.

The following gives an overview of the basic elements that developers
design for a Notes database application.

Designing Forms
Notes developers create forms to provide the user with a skeleton to create
and retrieve information. Forms contain several design elements, such as
fields to store text and image data, and buttons to process the form data or
to access related data located within or outside of Notes. In each database,
there is at least one form but there are generally more, each serving a
particular purpose.

28 Lotus Notes Release 4.5: A Developer’s Handbook

All the user data is stored in the Notes database as documents. To create
and store a document in the database, the user chooses a form from the
Create pull-down menu, fills in the form, and saves it as a document in
the database.

Note Forms are mandatory in databases.

Designing Subforms
A subform is an object within a form that can be reused across forms within
the database. A subform can contain a logo, a set of fields, or buttons. A
form can contain several subforms.

Note Subforms are optional in forms.

Designing Collapsible Sections
You can create sections within a form that can be expanded or collapsed
depending on the user’s need to view that particular piece of information.
For example, you can create a form containing an explanatory section,
which can be collapsed after it has been read. You can also assign controlled
access to collapsible sections.

Note Sections are optional in forms.

Designing Navigators
Navigators are a new type of view. They represent a graphical “table of
contents” of a database. You can configure navigators to present
information in a graphic fashion that opens views and folders, or provides
links to other navigators. You can also configure navigators to drop
documents into folders and run @Functions or LotusScripts, making it
possible to easily implement more sophisticated applications such as
workflow and messaging.

Note Navigators are optional in databases.

Designing Fields
A field is an element in a form that contains data stored in a specific format.

There are several types of fields, such as editable and computed fields.
They support different formats including:

Text

Rich text, for large amounts of text, graphics, attached files or
multimedia objects

Number

Date and time

User names or group names

Keywords that can be displayed as option buttons, check boxes or lists

Chapter 2: Creating Notes Databases 29

Fields can also be:

Shared to be reused in several forms on an individual basis or grouped
in subforms that allow the reuse of a whole set

Stored in access-controlled sections to restrict access to the information
to predefined users

The following figure shows a form taken from the Document Library
template. The form contains fields that can be edited (NOTES
Presentations), and fields that are computed (the Created By field).

The Category field provides a list from which the user can select one or
several entries.

In addition, two Freelance presentations are stored in an editable, rich-text
field. Clicking on either icon will start Lotus Freelance and open the
presentation.

Note Fields are mandatory in forms.

Designing Hotspots
There are several types of hotspots:

Pop-up text

Buttons

Links to databases or views or documents.

Hotspots can be implemented as buttons that allow users to perform simple
tasks, for example, shortcuts to Notes menus, or complex tasks linked to the
document processing. These tasks can be written using @functions or
LotusScript programs.

30 Lotus Notes Release 4.5: A Developer’s Handbook

The links can be created when designing the form to point to a specific
database or view, or they can be created dynamically using a set of
@functions. They enable you to program links between documents.
The user can then open documents using a single mouse-click.

Note Hotspots are optional in forms.

Designing Tables
Tables are useful to summarize information or line up fields in rows and
columns. You can define static tables where you predefine in advance the
number of rows. Or, you can define dynamic tables where the number of
rows can be adjusted to the user’s needs.

Note Tables are optional in forms.

Designing Layout Regions
Layout regions provide you with a graphical interface for laying out text,
graphics, fields, and other components when creating a form or subform.

While designing a form, you can insert a layout region frame within the
form. Within this frame, you can place text, graphics, and other fields.
You can create them within the frame, or you can drag them from other
locations within the form. This enables you to use layout regions in forms
requiring text-overlaying graphics, where-placed fields, and field-tab
sequencing.

Note Layout regions are optional in forms.

The following figure shows an example of a layout region taken from the
Room Reservation template. It contains text, buttons and drop-down lists.

Chapter 2: Creating Notes Databases 31

Designing Views
A view displays a summary of the documents contained in a database
using a row-and-column format. The view generally lists the key fields
of documents but it can also do basic calculations, such as totals and
averages.

There can be several views in the database, each one presenting the data
in a particular way. For example:

Different fields can be displayed

You can display all the documents, or only documents by author,
for example

You can apply different sort criteria for columns to be displayed

The following figure shows a typical Notes Release 4 view taken from the
Document Library database:

There is an action bar at the top of the window and a navigator on the
left-hand side.

On the right side, the documents are displayed and categorized. The arrows
next to the documents (they are also called “twisties”) indicate whether a
category is expanded or collapsed, that is, if the documents related to that
category are listed or not. To read or edit a document in a database, the
user opens a view and selects and opens the document shown as a row in
the view.

Note Views are mandatory in databases.

32 Lotus Notes Release 4.5: A Developer’s Handbook

Designing Folders
Users can create folders to organize documents displayed in views in a
different way. When users store documents in folders, they actually store
pointers to the documents. The documents can be moved from folder to
folder, removed from the folder, or deleted from both the view and the
folder.

Note Folders are optional in databases.

Designing Action Bars
The action bar is a new feature of Release 4, which you can use in forms,
views, and folders. It is a non-scrollable set of buttons displayed under the
SmartIcon bar. Each button performs an action that a user would typically
do either using the menu bar or using the different buttons provided in the
form. In a view, you could, for example, provide an action called “Move to
Folder” to ease the user’s work. In a form, you could put the basic actions,
such as Save, Close, and Response to Document on the action bar. This
would enable users working within a document to quickly perform those
actions.

Note Action bars are optional in databases.

Designing Agents
Agents are procedures that a developer or user can write to provide
automation for specific actions. Such actions can be, for example:

Archiving old documents

Categorizing mail depending on the author of the memo or on the
existence of keywords in the subject field

Periodic creation and mailing of summaries of newly created
documents.

Note Agents are optional in databases.

Designing Icons
An icon represents the database on the workspace. It can be drawn or
copied from an existing application such as Windows PaintBrush. Icons
on the workspace should be unique in their appearance.

Note Icons are recommended in databases.

Chapter 2: Creating Notes Databases 33

Writing Help Documents
You should write Help documents to provide the user with at least some
basic information regarding the purpose of the database and the usage of
database forms and views. You should also document the key fields and
actions that can be performed in a form.

Note Help documents are recommended in databases.

In the following chapters, we are going to see examples of each of the
design elements described above. We will also look at some of the template
databases included with Lotus Notes.

34 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 3
The Notes Integrated Development Environment

Introduction

Lotus Notes provides a complete integrated application development
environment which allows you to create a variety of elements that are used
in a Notes application. A typical Notes application consists of several or all
of the following:

Forms — which provide the templates through which data in the
application is entered and displayed. Unlike a traditional template,
forms can also act on the data. That is, they may contain application
logic and processing. For example, when a user inputs information in
the form, the form might, depending on the contents, send an E-mail
message to another user.

Views and folders — which provide different ways of looking at all or
part of your data, according to specified criteria. A view might be
thought of as similar to a report in a traditional database program,
except that the view is dynamic and includes links to information in the
application.

Navigators — which provide graphical means of moving between
views.

Agents — which add functionality to the application. For example, you
might create an agent that once a day scans the documents in the
database, checks the contents of certain fields, and places documents
that meet specified criteria into a special folder.

There are, within Notes, Integrated Development Environments (IDEs) for
developing each of the above named elements. These IDEs share many
common elements. For example, the tools for writing LotusScript are
identical among all of the IDEs. We will focus on the forms IDE since it is
the most complex, and therefore the most interesting one. Keep in mind,
though, that much of the discussion in this chapter applies to the
development of all Notes elements, not just forms.

35

Elements of the Forms Integrated Development Environment

The picture below illustrates the IDE you use when creating and editing
forms in Lotus Notes.

The three components of the Integrated Development Environment are
represented in the picture.

Main Design Window
This is the large window at the top left of the screen where you visually
design your form. Using this window you can add static text, fields, layout
regions, and embedded objects to the form.

To work in this window you place your cursor at the desired position on
the form and type your text, or use the menus or SmartIcons to insert the
desired object. When you are working in this window the status bar at the
bottom of the screen provides controls you can use to quickly format text.

Action Pane
This is the narrow window at the top right of the screen. The action pane is
used to define actions that are associated with the form. An action is a
LotusScript procedure, simple action, or macro that performs work when
activated. Actions can be invoked from the menu bar, the action bar, or by
LotusScript procedures.

36 Lotus Notes Release 4.5: A Developer’s Handbook

The action pane is not visible in the Integrated Development Environment
by default. To view the action pane, do one of the following:

1. Choose View - Action Pane, or

2. Drag the right-hand edge of the main design window to the left, as
shown in the following figure, until the action pane is the size you
want.

To hide the action pane you can either drag its left border all the way to the
right, choose View - Action Pane to uncheck the menu option, or click on
the appropriate SmartIcon.

Design Pane
The design pane is the window below the main design window and the
action pane. This is where all the programming work in Notes, be it using
simple actions, the formula language or LotusScript, takes place.

The design pane is, by default, visible when you create a new form or open
one for editing. You can also drag the border between the main design
window and the design pane to change the size of both, or to hide the
design pane altogether. You show or hide the design pane by choosing
View - Design Pane, just as you do to show and hide the action pane.

The design pane is also used when you are creating or editing a database
or view action.

There are a number of components to the design pane. Let’s look at each
one of them.

Chapter 3: The Notes Integrated Development Environment 37

Define Box

The define box is a combo box that shows you all of the objects on your
form that can be programmed, along with all of the actions defined for
the form.

Event Box

This combo box shows all of the programmable events for the object
showing in the define box. Each object has its own set of events, so the
contents of this box will change in accordance with the object specified in
the define box. There are also some cases where no events are available, in
which case the event box is not shown. Also, LotusScript procedures or
|subs| which you add to your Notes application will appear in this list.

Run Area

The three option buttons specify the type of programming that you will
apply to the specified object and event. Choose one of the following:

Simple Action(s): Lets you easily specify one or more actions from a
number of pre-defined actions, such as Modify Field, Send Document,
Move Document to Folder, etc. When you specify Simple Action(s), an
Add Action button (see following figure) appears at the bottom of the
design pane. Clicking this button brings up a dialog box which allows
you to specify the action you wish to perform. Not all objects on the
form support simple actions. If an object which does not support simple
actions is selected in the define box, this option button is disabled. To
edit an existing simple action, select it with the mouse and then click
the button; the button changes to Edit Action when the action is
selected.

38 Lotus Notes Release 4.5: A Developer’s Handbook

When you click on the Add Action button, a dialog window to specify a
pre-defined action appears as in the following figure.

Formula: Lets you write Notes formula language macros and
commands that will run when the specified event occurs for the object.
When you specify Formula, a Fields & Functions button (see following
figure) appears at the bottom of the design pane. Clicking this button
brings up a dialog box which will display all of the fields defined on the
form, or all of the functions available in the Notes formula language.
Double-clicking one of these fields or functions inserts it into the editor
window at the current cursor position.

When you click on the Fields & Functions button, a dialog window to
specify a function or a field appears as in the following figure.

Chapter 3: The Notes Integrated Development Environment 39

When certain events are selected an @Commands button will appear
next to the Fields & Functions button. Clicking this button brings up a
dialog box which will display all of the @Commands available in the
Notes formula language. Not all objects on the form support formulas.
If an object which does not support formulas is selected in the define
box, this option button is disabled.

Script: Lets you write LotusScript procedures that will run when the
specified event occurs for the object. When this option is selected, the
Fields & Functions button and an Error combo box are made available.
Not all objects on the form support LotusScript. If an object which does
not support LotusScript is selected in the define box, this option button
is disabled.

The last control in the run area is the Show Browser check box. This control
is only enabled when the Script option button is selected. When this control
is checked, the object browser is displayed, as shown below:

The browser is a ready reference of the LotusScript language and functions,
and of all of the objects, their properties and methods. For example, if you
want to quickly determine all of the methods available for the
NotesDocument class, show the browser and then:

1. Select Notes Classes from the top combo box. All the Notes object
classes are displayed.

2. Scroll the browser’s list box until you find the NotesDocument entry.

3. Click the triangular “twistie” icon to expand the listing under
NotesDocument. You will see three entries, for Properties, Methods
and for Events. The Events entry has no twistie, meaning there are no
events defined for this class.

40 Lotus Notes Release 4.5: A Developer’s Handbook

4. Click the Methods twistie, and a list of all of the NotesDocument
methods will be listed, as shown below:

5. Double-click the method or property in the browser to insert the
prototype code into your Notes application.

Script Editor and Formula Editor
The larger window below the run area is where you program the actions
that Notes will execute. If the Formula option button is selected, this area is
the formula editor. If the Script option button is selected, this area is the
script editor.

When the Script button is selected, the script editor will automatically enter
the appropriate Sub and End Sub statements for the specified object and
event, as the following picture illustrates:

Chapter 3: The Notes Integrated Development Environment 41

Error Box
This box (see figure above) is only displayed when the Script button is
checked. It lists all of the syntax errors that Notes detected in your
LotusScript. If there are multiple errors, clicking the arrow to the right of
the error box will expand this combo box so that all syntax errors found are
displayed. You can navigate to a specific error in the list, no matter where
in the application it is located, by selecting it from the drop-down list.

When a syntax error is corrected, Notes will remove the error indication
from the error box. Notes will not allow you to save a form with
LotusScript syntax errors, so you will have to fix all errors (which will
result in an empty error box) before you will be able to save your form. If
you wish to save an application with errors in it, comment out the sections
that contain errors, or copy the contents to the clipboard, remove the error,
and save the application.

Working With the Script Editor

The script editor functions very much like a text editor. The standard text
editor key conventions are used, such as:

HOME places the cursor at the start of the current line.

END places the cursor at the end of the current line.

CTRL+HOME places the cursor at the start of the script.

CTRL+RIGHT ARROW moves the cursor one word to the right.

You can select text in the usual way (using the SHIFT and arrow keys, or
by dragging the mouse pointer over the text to be selected). The
clipboard-related menus and SmartIcons, such as Cut and Paste, are
available when you are working in the script editor, as well as the
corresponding accelerator keys, such at CTRL+C and CTRL+V. This means
that you can cut and paste scripts, or script fragments, from other objects
in Notes.

Design Pane Properties
The properties of scripts in the programming pane can be changed as
follows:

Script color

Font properties

42 Lotus Notes Release 4.5: A Developer’s Handbook

1. Click the right mouse button on the programming pane.

2. Select Design Pane Properties to set the properties of scripts displayed
in the programming pane.

The Design Pane InfoBox is displayed:

Setting the Script Color
To set the script color, follow these steps:

1. On the Design Pane InfoBox, select the Script option button.

The Script color options are only available when you select the Script
option button.

There are 5 types of categories for which the font color can be changed:

Identifiers

You can change strings, such as, variable name, event name, class
name.

Keywords

LotusScript keywords, built-in procedures, functions and so on.

Chapter 3: The Notes Integrated Development Environment 43

Comments

Comment lines between %REM and %END REM directives

Strings starting with a single quote (‘)

Directives

%INCLUDE, %REM and so on

Errors

Lines which have syntax errors

2. Drop down the list of available colors and for each script type, choose
one of the 16 colors available:

Note Once you have set the script color properties, they are in effect in
any programming pane (forms, agents, and so on) within the same
Notes database.

Setting the Font Properties
To set the font properties, follow these steps:

1. On the Design Pane InfoBox, select the Formula option button, for
example.

2. Specify the font type, font size, and text color of the formula language
shown in the programming pane.

Note You can specify the same features for scripts and simple actions.

Any font you want can be used, but a monospaced font is generally a good
choice for program statements.

44 Lotus Notes Release 4.5: A Developer’s Handbook

Selecting the above properties results in the following figure:

Searching Your Scripts
You can search all your LotusScript programs in a database as well as the
scripts displayed in a programming pane. If desired, you can replace the
search string that was found. This feature is only available for LotusScript
source programs.

1. Select the Script option button in the programming pane.

2. To display the Find and Replace dialog box, select Edit - Find/Replace
or click the right mouse button on the programming pane and then
select Find/Replace.

3. If you’d like a case sensitive search, select the Case check box.

Chapter 3: The Notes Integrated Development Environment 45

4. You can choose a range for the search string.

The following three options are available:

Current Object

All of the events in an object including the scripts which you are
currently working with. For example, all of the events in a Form
object.

Current Section Only

Only one event in an object currently displayed. For example, a
PostOpen event in a Form object.

All Objects

All events in all the objects of a design component. For example, a
form, a navigator and so on.

Exporting Script Programs
When you debug or maintain your script programs in a Notes database,
you may want to print them out and archive them. When there are many
events which hold large scripts, it is quite hard to copy and paste them into
another editor. In that case, you should consider exporting all of your script
programs using the export feature. There are three export features
available, which are the same as the Find/Replace options.

Note The export feature is only available for LotusScript source programs.
If you’d like to get a summary of all the Formula programs in a Notes
database, select File - Database - Design Synopsis.

1. Select the Script option button on the programming pane.

2. To display the Export dialog box, select File - Export or click the right
mouse button on the programming pane and then select Export.

46 Lotus Notes Release 4.5: A Developer’s Handbook

3. Specify a directory where you want to save the scripts and a file name
and click the Export button. The following dialog box is displayed:

You can choose one of the following three export options:

Current Object

All of the events in an object including the scripts which you are
currently working with. For example, all of the events in a Form
object.

Current Section Only

Only one event in an object currently displayed. For example, a
PostOpen event in a Form object.

All Objects

All events in all the objects of a design component. For example, a
form, a navigator and so on.

The following figure shows an example of script programs exported from a
Notes database.

Once you have modified the scripts, you can import them into a Notes
database as described in the following section.

Chapter 3: The Notes Integrated Development Environment 47

Importing Script Programs
When you create script programs, you may want to use your favorite editor
instead of the Notes script editor. There are two choices for you to use your
script programs created outside the Notes IDE. One is to use the %Include
statement to include your script file (it should be a plain text file) into a
Notes application.

Note Scripts included by %Include cannot be debugged using the
LotusScript debugger. They must be imported bug-free.

The other choice is to use the Import feature described here. It allows you to
import a script file into a programming pane. This means that scripts are
imported into a current object. This feature is only available for LotusScript
source programs. The Export option All Objects is not available for
importing scripts.

1. Select the Script option button on the programming pane.

2. To display the Import dialog box, select File - Import or click the right
mouse button on the programming pane and then select Import.

3. Specify a directory where to save the scripts, and a file name.

4. Click the Import button.

Note If you try to import scripts which have been exported using the
Export option All Objects, you may see the following dialog box. Select an
appropriate action as required by your program environment. Be aware
that your script may become corrupted if you choose a wrong action.

48 Lotus Notes Release 4.5: A Developer’s Handbook

Special Script Editor Features
One feature already mentioned is the capability of looking up LotusScript
functions and objects in the browser. If you click on any entry in the
browser, that entry becomes highlighted, and you can click the Paste button
at the bottom of the browser to paste that line at the current cursor position
in the script editor. You can also double-click the entry to copy it to the
script editor.

Each time you press the ENTER key, or move off a line of LotusScript, the
script editor checks that line for syntax errors, and also capitalizes the
LotusScript reserved words, that is, the words in the statement that are a
component of the LotusScript basic language.

When you enter structured programming statements such as For, While,
Do, Select Case, etc., the script editor automatically does the following:

Inserts the corresponding ending statement (for example, Loop for the
Do statement) below the statement you typed.

Inserts a blank line between the two statements, with the cursor being
placed on that line so you can continue to type your code.

Automatically indents the statements within the construct.

The following figure shows the state of the script editor after you type the
opening statement of a Do loop:

When the ENTER key is pressed, the script editor window changes as shown
in the following figure:

Chapter 3: The Notes Integrated Development Environment 49

Chapter 4
Designing Application Forms

When you have completed this chapter, you should know:

How to build and modify forms

How to change the form attributes

How to create fields in a form, and change their attributes

How to use various design elements, such as subforms, buttons, layout
regions, and the action bar

How to create program DocLinks

Using the Document Library Template
The Document Library template is an ideal database to start with. This is
where you can find the largest number of the features that make Notes
Release 4 so impressive.

In addition to the @Functions and the interface that Release 3 developers
already know, the Document Library template contains a lot of the Release
4 features. Here are some of them:

Interface

Action Bar

Navigator

Layout Region

SubForms

Programmability

Simple Action

LotusScript

Agents

Workflow and document routing

You will see some more as we go along.

Notes is an excellent container to store documents. The Document Library
database itself is an electronic filing cabinet that stores reference
documents. The documents are sent to reviewers for comments.

51

To create your working database:

1. Choose File - Database - New.

2. In the Title field, type a title for the database, for example, My
Document Library.

3. In the File Name field, type a file name for the database, for example,
MYDOCLB.NSF.

4. Select the Document Library (R4) entry from the template list.

5. Make sure you remove the check mark next to Inherit future design
changes as we are going to do some modifications to the design. We do
not want them to be overridden by changes made on the server version
of the database.

6. Click on the OK button. The database is created on your workspace
and the first document of the database is displayed. This is the help
document “About the Document Library.”

7. Leave the document by pressing the ESC key, or by choosing File -
Close. The My Document Library - All Documents view is displayed.
It is currently empty.

Creating Sample Documents
Create two sample documents to get a better impression of what the
database looks like. To do so, perform the following steps:

1. Click the New Document push button on the action bar.

Tip You can also choose Create - Document.

The New Document form is displayed. You can see several kinds of
fields:

The cursor is on an entry field of format Text

Three computed fields in the Created By line: Author of the
document, of format Author Name, and two fields of format time,
one containing the date, the other containing the time

Next to the static text showing the word Category, an entry field
of format keyword list

An entry field, of format rich text

2. Specify the data of the first document. In the cursor field, type, for
example, My first document.

3. Click on the arrow next to Category.

4. Deselect Miscellaneous in the Keywords list.

52 Lotus Notes Release 4.5: A Developer’s Handbook

5. In the New Keywords field, add your own keyword, for example,
Random file. The Select Keywords window looks like this:

6. Click OK. The new keyword is displayed in the Category field.

7. Use the tab key to go to the last field.

8. Choose File - Attach and select any file from the list displayed.

9. Click the Create button. An icon is pasted into the field.

10. Click the Close button on the Action Bar and confirm that you want to
save the document.

11. Create a second document.

12. Specify the data of the second document. In the cursor field, type, for
example, My second document.

13. Click on the arrow next to Category.

14. Leave the Miscellaneous option selected.

15. Click the Mark Private push button on the Action Bar.

16. Click the Close button of the Action Bar and save the document. Now
that you are back in the view, you can see:

Next to each category is a twistie, an arrow that points downwards
or horizontally when clicked. It shows if a category is expanded or
collapsed.

Note This arrow replaces the following formula used in Release 3 to
expand or collapse a list:

@IsExpandable(“+”; “”)

In Release 4, no code is necessary any more!

Next to the second document, a lock icon indicates that the
document is private.

Note Notes supports 170 different icons in view columns.

Chapter 4 covers twisties and icons in more detail.

Chapter 4: Designing Application Forms 53

Using Forms

The form is the skeleton you provide to users. They can enter data either
by typing or by using buttons. There is always at least one form in a
database. Most often though, business applications have more than one
form, each form being targeted to the type of information the user wants
to save in the database.

The form contains all the design elements: fields to store the user’s
information, and static text, buttons, sections, and subforms that help
the user gain access to the information.

To create a new form, choose Create - Design - Form. Or, you can copy
and paste a form from the Design Form pane and from there perform
your customization.

In this chapter, you are going to edit the properties of an existing form,
the Response form, to give you an idea of what is available to you.

Specifying Form Properties
The Form InfoBox box contains all the information related to forms.

To look at the form properties, do the following:

1. From the standard navigator expand the Design option.

2. Choose Forms.

3. Double-click on the Response form listed in the view pane to open up
in design mode.

4. Click the Properties SmartIcon.

5. In the InfoBox displayed, click on the Properties for: combo box and
select Form. An InfoBox box is displayed that allows you to set the
properties of the form. It consists of six tabs:

Basics

Defaults

Launch

Background

Print

Security

54 Lotus Notes Release 4.5: A Developer’s Handbook

Using the Basics Tab
The Basics tab stores general information about the form.

1. In the Form name field, specify a name and an alias for the form.

By default, the form name appears as an item in the Create option on
the menu bar. It is the name the user sees. Therefore, make it as
meaningful as possible.

2. If desired, add an underscore next to one of the letters of the name to
be used as an accelerator key.

3. It is recommended that you create an alias for each name. This is the
name you will use in your code. Specifying an alias enables you to leave
your code unmodified if the user requests to have the name of the form
changed, for example.

4. Specify the form type. This form is a response type, which means that it
is linked to a main document of type document, and that it cannot exist
without this parent. A third type is the Response to Response type,
which adds a third level to the document hierarchy.

5. If you want to include the form in the Create option on the menu bar,
you can select:

Create menu if there is only a small number of forms. Up to nine
forms are possible in the Create option.

Create - Other dialog if there are many different forms. It is
recommended to put the least used forms with the Create - Other
dialog option.

6. Click the Search Builder check box to add the response form to the list
of forms that users can search.

Chapter 4: Designing Application Forms 55

7. In the Versioning field, specify whether or not you want version
control. These options are possible:

None

New versions become responses

Prior versions become responses

New versions become siblings

8. You can decide to keep track of the different versions of the document
that have been created. The current version can be set as a response to
the previous version of the document, or vice versa.

9. Check the Anonymous Form check box if you want authors or editors
to anonymously put documents based on this form into the database.

Note Documents created with an anonymous form do not contain the
$UpdatedBy field but have a $Anonymous field with a value of 1.

Of course, you need to make sure that the author’s or editor’s name
does not appear in any other field of the form.

10. If desired, check the Merge replication conflicts check box. Notes then
merges conflicting edits into a single document whenever possible. If
two users edit different fields in the same document, Notes saves the
changes to each field in a single document. The field replication feature
new to Release 4 makes this possible.

However, if two users edit the same field in the same document, Notes
saves one document as a main document and the other as a response.

Using the Defaults Tab
The Defaults tab lets you specify details regarding the usage of the form.

1. Leave the Default database form check box deselected as our current
form is a response form.

Notes uses a default form to open documents whenever their associated
forms have been dropped from the database design. You should select
this option for the main form of the database.

2. Leave the Store form in document check box deselected.

You must store the form into the document if a user that has no access
to the database, for example, if a user receives a document and has no
access to the design of the form used to create the document.

Note Selecting the Store form in document option increases the
amount of disk storage required to store each document based on the
form.

3. Leave the Disable Field Exchange check box deselected to enable data
exchange with Notes/FX compliant applications.

56 Lotus Notes Release 4.5: A Developer’s Handbook

4. Leave Automatically refresh fields deselected. If it is critical to users
that fields be recalculated as they fill in the form, you must select this
option. But for performance reasons, it is better to refresh selected fields
through formulas or scripts when the user clicks on a button or saves
the document.

5. In the On Create section, leave the first check box selected. This ensures
that the data contained in the fields of the parent document are copied
to the fields of the response document.

In the Document Library template, the subject of the main document
is copied to the OriginalSubject field of the response form. Here is the
formula of the default value for the OriginalSubject field:
@If(@IsAvailable(OriginalSubject);
 OriginalSubject;
 Subject)

The subject of the main document is copied into the OriginalSubject
field when the response document is created.

6. If desired, check the Inherit entire selected document into rich text field
option, and specify how the fields of the parent document will be
displayed in the response document. There are three possible options:

Link

Collapsible rich text

Rich text

7. If desired, in the On Open section, check the Automatically enable Edit
Mode check box. This opens the document in edit mode.

Note The default is browse mode.

Chapter 4: Designing Application Forms 57

8. Check the Show context pane check box if you want Notes to divide the
window into two parts:

The Response document you open is in the top half of the window

The Parent or linked document is in the bottom half

9. If desired, check the Present mail send dialog check box. This ensures
that the user is presented with the Mail window, but can only be used if
you have created a SendTo field in the form, which contains the
addressee of the document.

Experiment with the Defaults page at your leisure. Before leaving it, make
sure that the Inherit entire selected document and the Show context pane
check boxes are deselected.

Using the Launch Tab
The Launch tab enables you to specify what happens when the document
is opened.

1. In the Auto Launch field, specify the type of action to take place when
the document is opened. These are the available options:

None

First Attachment

First Document Link

First OLE Object

2. Specify First Attachment if the database contains different types of
attached documents, such as ASCII files, presentations, or word
processor files.

58 Lotus Notes Release 4.5: A Developer’s Handbook

3. If you choose First OLE Object, the InfoBox looks like this:

4. Specify additional information as required.

5. Before you leave the Launch tab, make sure that None is selected in the
Auto Launch field.

Using the Background Tab
1. Click the background tab to specify the options about the background

on the form.

2. Specify the background color for the form using the Color drop-down
combo box.

3. If desired, click the Paste Graphic button to paste a graphic image into
the form. If the image is smaller than the form, Notes tiles the image to
conform to the size of the form.

Note You need to copy an image to the clipboard before you click
the button.

Tip Keep in mind that the cursor could be difficult to see on some
displays if you choose a color such a yellow, for example.

Chapter 4: Designing Application Forms 59

Using the Print Tab
1. Click the print tab to specify options related to printing a document

based on the form.

2. Use the icons listed under the Header and Footer option buttons to
define the date and time, tabs, and page numbering.

3. You can also select the font, size, and style.

Using the Security Tab
Use the security tab to define which users or user groups are authorized
to use the form.

60 Lotus Notes Release 4.5: A Developer’s Handbook

1. Deselect the All readers and above check box. This activates the small
button to the right of the list.

2. Click the button. A window is displayed that allows you to select the
users and groups from the different address books you have access to.

3. Specify who can create documents with this form. The default is all
authors and above. If required, deselect the check box and click the
small button to the right of the list. A window is displayed that allows
you to select users and groups.

4. If required, select disable printing/forwarding/copying to clipboard.
This makes it more difficult for users to distribute the documents
created with this form to other users. However, it is recommended to
limit this option to confidential data.

Note Selecting this option does not prevent the usage of other
software to copy data to the clipboard.

5. Select Available to Public Access users, if required.

 Giving the Form a Title
You can define actions to be performed when users trigger events as they
compose, edit, or browse a document created with the form. The events can
be defined in the programming pane at the bottom of the Form Builder
window.

One event you can define is the window title. When you design a form,
make sure you give it a title. The title will then appear on the Notes title
bar when a document is created or edited based on the form.

1. Close the Form InfoBox and return to the Form Builder window.

2. Take a look at the formula used to set the window title of the response
form:

DEFAULT OriginalSubject :=
@If(@IsAvailable(OriginalSubject); OriginalSubject;
Subject);
NewRespTitle := "New Response to \"" + OriginalSubject +
"\"";
StandardTitle := "Response " + @DocNumber("") + " of " +
@DocSiblings + " to \"" + OriginalSubject + "\"";
@If(@IsNewDoc; NewRespTitle; StandardTitle)

OriginalSubject is a field of the form. NewRespTitle and StandardTitle are
work variables whose scope is limited to this formula.

The variable NewRespTitle stores the New Response text string concatenated
with the variable OriginalSubject that contains the subject of the parent
document.

Chapter 4: Designing Application Forms 61

The variable StandardTitle stores the concatenation of the sequence number
of the response (@DocNumber), the number of responses linked to the
parent document (@DocSiblings) and the subject of the parent document.

If the document is a new document (@IsNewDoc), the title is set to
NewRespTitle. If the document already exists in the database, the title is set
to StandardTitle.

Looking at Form Events
In the programming pane, you can define additional actions. You can code
processes to be performed:

When the document is initialized

Before or after the document is opened (Queryopen and Postopen)

Before or after the document changes its mode from browse to edit
or from edit to browse (Querymodechange and Postmodechange)

When the contents of document fields have been recalculated
(Postrecalc)

When the document is saved (Querysave) or closed (Queryclose)

When the document terminates

Here is an example of the programming pane when you code the process
Querysave:

62 Lotus Notes Release 4.5: A Developer’s Handbook

You can see that:

The code you write is LotusScript as the Script option button is
selected.

The browser is displayed on the right. It gives you access to Notes
and OLE2 classes, the LotusScript syntax, constants, variables, and
other things.

The Querysave function provides two parameters. One of them is
an instance variable of the Notesuidocument class. It is the unique
ID that identifies the document being saved. In the browser, you see
that you have access to all the properties, methods and events of that
class.

The LotusScript compiler has found one syntax error. It is listed in the
Errors combo box showing the source line number.

The Fields & Functions push button gives you access to all fields of the
forms, even to the @Functions as it is possible to imbed @Functions into
LotusScript.

 Creating a New Field

We are going to look at a fast way to go from the child document created
with the Response form to its related parent.

Of course, you could use the following Navigation SmartIcons to go from
one document to the other.

However, this can be cumbersome when you need to scroll up a number of
child documents before you reach the related parent.

To provide a more elegant solution, we are now going to create a field
in the Response form. It will be used to store a reference, or DocLink,
to the parent document. This will enable you to quickly access the
parent document when browsing the response document. It could be
especially useful if you want to refer to some of the information you are
responding to.

1. You should still see the Form Builder window of the response form
displayed. If not, from the standard navigator, choose Design, then
Forms, and open the Response form listed in the view pane.

Chapter 4: Designing Application Forms 63

2. Type the static text as shown in the following example. The static text
is Document Link.

3. Next to the static text, create the field CopyDocLink. To do so, choose
Create - Field.

Tip You can also display a pop-up menu using right-click and choose
Create Field.

4. On the InfoBox for Field, type a name for the field, for example,
CopyDocLink. The new name is now also shown in the Define field in
the programming pane.

5. In the Type field, choose Rich Text.

6. In the programming pane, type the following:

@InheritedDocumentUniqueID

7. Leave Default Value as the event type.

8. Save the modified form by pressing the ESC key, and confirm that you
want to save the form.

9. Close the information box that is displayed.

Performing a Test Run
To test your modification:

1. From the standard navigator, select All documents.

2. In the view pane, select one of the documents you created earlier, and
click the Response button on the Action Bar.

64 Lotus Notes Release 4.5: A Developer’s Handbook

3. In the response document, you see that a document link has been
created. It looks like this:

4. Double-click on the small icon. The parent document is displayed in full
screen. It overlaps the response document.

5. Click the Close button on the Action Bar to close the parent document.

6. You are now back in the Response document. Type Response 1 in the
cursor field.

7. Click the Close button on the Action Bar and save the document.

In the list of documents, the response document now appears indented
under its parent document.

Sharing and Reusing a Field
It can also be useful to create a DocLink field in the Response to Response
form. As the same logic is applied, we can reuse the same design as for the
DocLink field in the Response form. The DocLink created in the Response
to Response document will then point to its parent Response document.

Rather than create a new DocLink field, we are going to share and reuse the
field CopyDocLink you just created in the Response Form.

Sharing a Field
To share the field CopyDocLink, perform the following steps:

1. From the standard navigator, choose Design, then Forms. The list of
forms is displayed in the view pane.

2. Double-click the Response form. The form is displayed.

3. Click on the field CopyDocLink.

4. Choose Design - Share This Field from the menu bar.

5. Press the ESC key and save the form.

The field is now shared, and you can reuse it in other forms.

Reusing the Shared Field
You can only reuse fields in the database where the field has been defined
as a shared field.

1. From the standard navigator, choose Design, then Forms. The list of
forms is displayed in the view pane.

2. Double-click the Response to Response form. The form is displayed.

3. Position the cursor in the same place as you did before in the Response
document, and type the static text: Document Link:

Chapter 4: Designing Application Forms 65

4. Next to the static text, right-click to display the pop-up menu of the
form.

5. Choose Insert Shared Field. A window is displayed.

6. CopyDocLink should already be highlighted. Click OK. The field is now
added to the form.

7. Press the ESC key and save the form.

Performing a Test Run
1. On the view pane, choose All documents shown in the left pane.

2. In the document pane, select the Response 1 document you have
created earlier.

3. Click the Response to Response button on the Action Bar.

4. In the response document, you see a document link. Double-click it.
The Response 1 document is displayed.

5. Double-click the DocLink shown in the Response 1 document.
The parent document is displayed.

6. Leave the documents by pressing the ESC key.

Looking at Field Properties
Now that you have created a field, we are going to look at some of the
properties of fields contained in the Document form.

Looking at the Date Field
1. From the standard navigator, choose Design, then Forms.

2. Double-click the Document form in the view pane to open it.

3. Double-click the Date field. The Field InfoBox is displayed. It looks
like this:

66 Lotus Notes Release 4.5: A Developer’s Handbook

On the Basics tab, Notes displays the field format. Part of it is the Time
format. It comprises both Date and Time, each of them supporting
several formats.

The Basics tab also shows how the data is actually put into the field.
The following types of field are available:

Editable: The user enters the data, or the data is created when the
user selects a button performing a formula or script written by the
developer.

Computed: The field is computed each time the document is created,
edited and saved.

Computed when composed: The field is only computed when the
document is created. This type of field is especially useful for storing
the name of the author of the document, the creation date or a
document reference number.

Computed for display: The field is computed each time the
document is opened in browse or edit mode. The contents of the
field are only visible while the document is open. It is not saved into
the database and is not visible in a view.

For example, this type of field is used to display the current time and
date or work variables, such as the server name where the database
is stored.

4. Close the InfoBox.

Looking at the Categories Field
Next, look at the Categories field.

The Basics Tab
1. Double-click the Categories field. The InfoBox for this field is displayed,

as shown in this figure:

Chapter 4: Designing Application Forms 67

The field is of type Keywords. There are different ways of displaying
the list of keywords from which users can make their selections. In our
example, an @DbColumn formula checks all documents in the current
database for predefined categories and retrieves them for display in a
keyword list.

2. Click on the Choices combo box. Here are some of the other choices
available:

Keyword Options
1. Go to tab 2 of the InfoBox. It looks like this:

2. In the Interface section, you can specify how the keywords will be
displayed. Three options are available:

 Dialog List

The keywords are displayed in a dialog list. If you want to enable
users to specify additional keywords not listed, check the Allow
values not in list checkbox on the Basics page of the InfoBox.

Checkbox

This is a multiple choice field. If you want the check boxes displayed
vertically, leave 1 in the Columns field. If you want the check boxes
displayed as a table, set the number of columns to a value greater
than 1.

To display all check boxes on one line, set the number of columns to
the number of check boxes available.

68 Lotus Notes Release 4.5: A Developer’s Handbook

Option Button

Only one option button can be selected at any given time. The option
buttons can be displayed vertically, horizontally or as a table.

Next, take a look at the programming pane:

The initial value has been set to “Miscellaneous.” The Event combo box
enables you to define other actions:

Input Translation: It can be used to modify the data entered by
the user, to trim blanks, and to change users’ names into uppercase
or propercase

Input Validation: This requires a choice from a list, which is done
using an @If formula. The same validation can be written using
LotusScript. To use LotusScript, you need to choose the Exiting
option in the Event combo box. The Script option button is
automatically selected.

Options Tab
Go to tab 3 of the InfoBox. It looks like this:

This tab enables you to specify:

Field help

Whether the entry field will have the initial focus when the form is
opened. You must specify this option if you want to place the cursor in
an entry field that is not the first one in the form. You can also use this
option if you want to paste data in a particular entry field before
placing the cursor in its final position.

Multi-value separators

Security options, such as Enable encryption for this field.

Chapter 4: Designing Application Forms 69

Fonts and Colors Tab
Tab 4 of the InfoBox lets you specify fonts and colors for the field data.
The tab looks like this:

Alignment Tab
Tab 5 lets you specify the alignment of the field. For example, you
should use this option if you define a field to be used as the title. If you
choose to align it in the center of the form, it will stay in the center
independent of the screen resolution used.

Print Option Tab
1. Go to tab 6 to set the printing defaults related to paragraphs. For

example, you can select to keep a paragraph on one page, or to insert a
page break before a paragraph.

2. Specify the tab settings for the fields. You must use that option if you
have multiple fields on the same line and want to keep them in the
same place where you have put them in the form.

Although you can set the tabs manually, it is better to set them directly
in the form using the ruler. To do so:

3. From the standard navigator, choose Design, then Forms.

4. Open the Document form.

5. Choose View - Ruler from the menu, or click on the Ruler SmartIcon.

6. Click with the left mouse button if you want a left tab stop.

7. Click with the right mouse button if you want a right tab stop.

8. Press SHIFT and click left if you want a decimal tab stop.

9. Press SHIFT and click right if you want a centered tab stop.

70 Lotus Notes Release 4.5: A Developer’s Handbook

Here is an example of left tab stops set for the Date and TimeCreated
fields using the ruler and using the InfoBox of the Date field:

10. To remove a tab stop from the ruler, click on it.

11. If you click the tab stop on the ruler with the right mouse button, the
tab stop information is displayed. From there, you can change the tab
stop from one type to another.

Hiding the Field
1. Return to the InfoBox for the Categories field.

2. Go to tab 7. It looks like this:

Chapter 4: Designing Application Forms 71

3. Several checkboxes are available to hide the paragraph on predefined
conditions. Or, you can specify other conditions using an @Function.

The following example shows the design of the Edit Document button,
which is available on the action bar when you open a document or a
response to a document:

The button is hidden when the document is previewed for reading,
previewed for editing, and opened for editing. It is also hidden if the
user is listed in the @Function as specified in the formula box. In all
other cases, the button is visible.

Note The InfoBoxes of all the design elements found in a form provide
a tab that allows you to specify hide-when conditions.

4. Return to the standard navigator.

Creating Design Elements for Subforms
You have seen that you can share and reuse fields across several forms.
Subforms, which are new in Release 4, extend the reuse of fields to groups
of design elements.

All design elements that are added to forms can also be put into subforms.
This includes:

Static text and pictures

Fields, whatever their type and format

Hotspots as buttons or links

Tables

Action Bar

72 Lotus Notes Release 4.5: A Developer’s Handbook

When you modify an existing subform, the changes are immediately
reflected in all the forms that use the modified subform.

Note You cannot create subforms within subforms.

Looking at a Subform
A subform is provided with the Document Library template. You can reach
its design using one of the following ways:

1. From the standard navigator, choose Design, then Subforms. The list of
subforms is displayed. Double-click on the DocumentWorkflow
subform. The Subform Builder window is displayed.

2. Or, from the standard navigator, choose Design, then Forms. The list of
forms is displayed. Double-click the Document form. Once the form is
open, double-click the subform part of the form. The Subform Builder
window is displayed.

Tip You might have to scroll up to the top of the window to see the
subform part.

The following figure shows you that the Subform Builder window is
identical to the Form Builder window. It contains:

The form in the design pane.

The actions linked to the subform in the action pane. When a form and
a subform are displayed, the action bars of both the form and the
subform are shown.

The field definition in the programming pane. In subforms as in forms,
both @Functions and LotusScript can be used.

Chapter 4: Designing Application Forms 73

Looking at the Subform Properties
To display the subform properties:

1. On the subform pane, click your right mouse button.

2. Select Subform Properties. The InfoBox is shown. It looks like this:

3. If required, check the Hide Subform from R3 Users check box.

Note You must hide the subform from Release 3 users if the subform
contains features that are not available in Notes Release 3, such as
layout regions.

4. Close the InfoBox.

5. Close the subform.

Removing Subforms
You can remove subforms from the design of a form or from the design of
a database.

Removing Subforms From the Form Design
If the subform is no longer needed in a particular form:

1. Open the design of the form.

2. Click on the subform area.

3. Choose Edit - Clear on the menu bar.

Removing Subforms From the Database Design
As for all design elements, you can remove subforms from the design of the
database. This can be necessary if all the fields contained in the subform are
no longer needed in any of the database forms.

74 Lotus Notes Release 4.5: A Developer’s Handbook

However, if the database contains documents using the deleted subform,
this is the message users will see when they try to browse the documents.

Note To make sure the users can still access the documents, you must
have an empty subform using the same name as the deleted subform.

Working With Layout Regions
A layout region is generally used as a nice background of a form. It consists
of a 16-bit graphic that contains several kinds of design elements, such as
fields (except for rich text), static text, buttons, and others.

Creating a Layout Region
To create a layout region:

1. From the standard navigator, choose Design, then Forms.

2. Open up a form listed in the view pane, for example, the Document
form.

3. Position the cursor in an empty area.

4. Choose Create - Layout Region - New Layout Region from the menu
bar. An empty frame is built in the form.

5. Open up a Picture tool such as Windows PaintBrush.

6. Open a BMP file.

7. Copy it to the clipboard.

8. Switch back to Lotus Notes.

9. Choose Create - Layout Region - Graphic. The graphic is pasted from
the clipboard to the layout region.

10. To add static text, choose Create - Layout Region - Text. A frame is
created within the graphic. You can move the static text frame around.
If you double-click on the static text frame, you display the Control box.

11. To create fields, choose Create - Fields as in any other form.

12. Return to the standard navigator.

Chapter 4: Designing Application Forms 75

Let’s Look at an Example
An example of a layout region exists in the Document Library template.
To look at it:

1. From the standard navigator, click All Documents in the navigator
pane. The list of available documents is displayed in the view pane.

2. Open the document entitled My first document.

3. Click on the Edit Document button on the action bar.

4. Click on the Setup Review Cycle button on the action bar. The Layout
Region document is displayed.

5. In the Review style field, choose Document reservations.

6. In the Allotted time field, choose Keep sending reminders after.

7. In the day field, type 1.

8. In the Notification field, choose Notify me after each reviewer.

9. Check the Save choices for next time check box. The completed Review
Cycle window looks like this:

10. Click OK to create the review cycle. This takes you back to the
document. Notice that a new element called Review Cycle Information
has been added to the document. This is a collapsible section, which we
will look at later on in this chapter.

The new element looks like this:

76 Lotus Notes Release 4.5: A Developer’s Handbook

Looking at the Properties of a Layout Region
To open the layout region that was used to create the Review Options form,
follow these steps:

1. The Document Library database should still be open. From the
standard navigator, choose Design, then Forms. The available forms are
listed in the view pane.

2. In the view pane, double-click on ReviewOptions to open up the form.
It contains the layout region you were looking at earlier.

3. Click on bitmap.

4. Click the Properties SmartIcon. The following InfoBox is shown:

The InfoBox has two tabs:

5. On the Basics tab, you can adjust the dimension of the layout region.
You can also display the grid to position the fields and static text within
that region.

6. On the Hide tab, you can select to hide the design element. Several
options are available. You can also define an @Formula to hide the
design element.

7. Close the InfoBox.

Working With Collapsible Sections

If the form design includes a long set of fields or fields that contain large
amounts of data, it can be annoying for users to scroll up and down to find
the information they are looking for.

In Notes Release 4, you can create collapsible sections to solve that problem.

Chapter 4: Designing Application Forms 77

Creating a Collapsible Section
To create a collapsible section within a form, follow these steps:

1. Open the design of a form.

2. Choose Create - Section - Standard if you want the section to be seen by
all the users that have access to the document.

3. Or, choose Create - Section - Controlled Access if you want to restrict
access to the section to certain users defined in a formula.

The InfoBox for Form Section looks like this:

4. Use the Editors tab to choose expand and collapse rules for users who
have editor access.

5. Use the Non-Editors tab to choose expand and collapse rules for users
who do not have editor access.

6. The Formula tab enables you to specify the required formula for
controlled access to the section.

7. Close the InfoBox.

Looking at a Collapsible Section
When you were working on the layout region design, you noticed that
specifying the review cycle information actually created a new section in
the document that was being edited.

If you look at what was performed in the Setup Review Cycle action, you
will see that the macro does the following (see the DocumentWorkflow
subform to get the design of this action):

Receives the user input using the @DialogBox function:

@If(@DialogBox("ReviewOptions";
 [AutoVertFit]:[AutoHorzFit];
 "Review Cycle") = @False;
 @Return(@False);
 "");

78 Lotus Notes Release 4.5: A Developer’s Handbook

Stores data in fields such as:

FIELD Status:= @Subset(@Subset(StatusList;2);-1);

Expands the Section:

@Command([SectionExpandAll]);

Positions the cursor in a specific field:

@PostedCommand([EditGotoField]; "Reviewers");

Refreshes all fields:

@PostedCommand([ViewRefreshFields])

The purpose of this field refresh is twofold:

To make sure that the user sees the data modified by the macro

To show the collapsible section that was previously hidden because
of the value of the Status field. This is the formula specified on the
Hide page of the Properties box for the section:

@Member(Status; tmpStatusList) = 1 : 4 | @IsResponseDoc

To see the design of the section Review Cycle Information, perform the
following steps:

1. From the standard navigator, choose Design, then Forms. The available
forms are displayed in the view pane.

2. Double-click on Document to open up the form containing the
collapsible section.

You can see an arrow next to the Review Cycle text. This is a twistie:
if you click on it, the section expands and shows all the section
information. If you click again, it collapses.

Looking at the Properties of a Standard Collapsible Section
1. Open the form for which you created a standard collapsible section

earlier. Or, create a standard collapsible section now before proceeding.
For example, you can define a section for the Document form.

2. To display the properties of the collapsible section, put the cursor in the
section area, and click the Properties SmartIcon. The Properties for
Section InfoBox is displayed. It consists of four tabs.

Chapter 4: Designing Application Forms 79

3. The Expand/Collapse tab enables you to define expand and collapse
rules when the document is previewed, opened for reading, opened for
editing, or printed.

Tip If a document based on this form can be read by many users but
created by only few users, you could have the section automatically
expanded if the document is opened in edit mode, and automatically
collapsed if it is opened in browse mode.

Working With Tables
Tables are added to forms to format data as columns and rows. Within the
table columns and rows, you can create design elements such as fields and
buttons.

For example, suppose you want to create a series of buttons next to each
other. You do not want the buttons to be split on several lines when the
window is resized.

To accomplish this, follow these steps:

1. In your form, click where you want to create the table.

2. Choose Create - Table.

3. In the Rows field, type 1.

4. In the Columns field, type 1.

5. Click in the table area.

6. Click the Properties SmartIcon to display the InfoBox.

80 Lotus Notes Release 4.5: A Developer’s Handbook

7. On the Cell Borders tab, click Select All to None.

8. On the Layout tab, deselect Fit to Window.

9. Start creating the buttons by choosing Create - Hotspot - Button, and
place all the buttons inside the table.

Working With Buttons

The action bar is a new and convenient way for you to position buttons that
the user of the database will most often use. The action bar is available in
both forms and views.

This chapter shows you how to work with buttons in forms. The following
chapter covers buttons in views.

In a form, you can have buttons to:

Switch from browse to edit mode.

Close the document with or without saving it.

Issue actions that are accessible even if the user scrolls down the
document.

The only restriction is the width of the action bar. It cannot be scrolled
horizontally and it does not expand across several lines. Therefore, it is
recommended that you:

Put only the most common actions on the action bar.

Decide whether or not to put an icon on the action bar. No icons means
additional space for more action buttons.

Keep the action title short though meaningful.

Develop for a VGA display if your users have different screen
resolutions, such as VGA 640 pixels and SVGA 800 and 1024 pixels.

Creating a Button on the Action Bar
We have seen earlier in this chapter that you can relate a response
document to its parent using a DocLink, which requires very little code,
namely, one @Function.

But there is one small inconvenience: when users click on the DocLink, the
parent document is displayed in full-screen hiding the response document
they started from.

Chapter 4: Designing Application Forms 81

It would be easier to look for information if both the response document
and its parent were visible at the same time.

You can achieve this by using the parent preview feature.

1. From the standard navigator, choose Design, then Forms. The list of
forms is displayed in the view pane.

2. Double-click on the Response from. The form is displayed.

3. Choose Create - Action from the menu bar. An InfoBox is displayed. It
looks like this:

4. In the Title field, type Parent Preview, for example.

5. From the Button Icon list, choose an icon for the button.

Note You cannot add your own icon.

6. Deselect Include action in Action menu.

7. If desired, change the position the button will have on the action bar, or
leave the value provided by Notes.

8. Close the InfoBox.

9. In the programming pane, type the following @Command:

@Command([ShowHideParentPreview])

This @Command toggles the parent document preview pane.

10. Choose File - Save, then File - Close.

82 Lotus Notes Release 4.5: A Developer’s Handbook

Note The NotesFlow Publishing tab of the InfoBox lets you publish the
action with an OLE object. The tab looks like this:

You are back on the view pane.

11. Select All Documents to display the list of documents.

12. Double-click on the Response 1 document to open it.

13. At the top of the document, the Parent Preview button is displayed
on the action bar.

14. Click on it. The window is divided into two parts, with the parent
document shown below the response document.

Note So far, you have looked at a DocLink connecting a parent with its
child document. You can also create a DocLink between documents that
are not related in that way. This can be very useful if you need to look up
information in documents within the same database or even across
databases.

Creating Hotspots

When designing forms, you can create the following types of Hotspots:

Links

Text Popup

Buttons

Creating Links
You can create links:

When designing the form

When creating or saving a document in the database

Chapter 4: Designing Application Forms 83

Links enable navigation to:

Notes documents

You did this earlier when creating a DocLink between a parent and a
child document. See the section “Creating a New Field.”

You can also create the link when you design a form. This could be
useful if you want to enable your users to quickly access a document in
a reference database, for example.

Notes databases

While designing a form, you can define a link to an existing database
for quick access by the users.

This icon represents a link to a database:

Internet Web pages

You can create a link to a Web page by making a hotspot to its URL and
using the @URLOpen command.

Defining Text Pop-ups
When you design a form, you can define text pop-ups to complement the
available online help information.

You are going to create a text pop-up for the DocLink field you created in
the Response document.

1. From the standard navigator, choose Design, then Forms.
2. On the view pane, double-click on Response.
3. Mark the text Document link: using the cursor.

4. Choose Create - Hotspot - Text Pop-up from the menu bar. The Hotspot
Box is displayed.

5. The Hotspot Box is drawn. On the first tab, type some text in the
Pop-up Text field. This is the text that users will see when they keep
mouse button 1 pressed over the Document Link text.

Creating Buttons in Forms
You have seen that buttons can be put on action bars. They can also be put
into a form. A button contained in a form performs a menu command or an
action whenever the user clicks on it.

 Actions can be:

Calculation of data

Lookups of data in current or other databases using the @DbLookup,
@DbColumn, @PickList formulas

Written using @Functions or LotusScript

84 Lotus Notes Release 4.5: A Developer’s Handbook

Since the Document Library database is used to store documents, you are
going to create a button next to the Body field in the Document form. This
button will replace the File - Attach option.

1. On the navigator pane, choose Design, then Forms.
2. Double-click on the Document form.
3. Position the cursor above the Body field.

4. Choose Create - Hotspot - Button from the menu bar. The Properties for
Button InfoBox is displayed. It looks like this:

5. On the first tab, type a button label, for example, File Attach. You can
also adjust the button width.

6. On the second tab, you can select the font and the color of the button
text.

7. The third tab enables you to specify alignment options.

8. Use the fourth tab to define pagination options, and to position the
button using the Tabs field.

Tip It is actually easier to specify tabs using the ruler.
9. The fifth tab lets you define Hide paragraph options. It looks like this:

Chapter 4: Designing Application Forms 85

10. Check Previewed for reading and Opened for reading, since
attachments can only be done when the document is in edit mode.

11. In the programming pane, type the following macro:

@Do(@PostedCommand([EditDown]; "1");
 @PostedCommand([EditInsertFileAttachment]))

The macro tabs the cursor down one field and performs a menu
command, which is File - Attach.

12. Close the form design and save it.

To test the macro button:

13. On the view pane, select All Documents.

14. Click on the New Document button on the action bar.

15. Once the document is open, you can click on the Attach File button you
have just created. The Create Attachment(s) InfoBox is displayed that
allows you to copy files into the Notes document.

Tip For more information on forms and fields, refer to the appropriate
chapters in the Application Developer’s Guide provided with Lotus Notes.

86 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 5
Viewing the Database

When you are done with this chapter, you should know:

About the structure of views, folders and navigators:

How to create and modify them.

How to edit their properties.

How to create an action bar.

How to move documents from views and folders.

How to control the information displayed in a view:

Document Selection.

Field Selection.

How to control who has access to views.

What Is a View?

Views list the documents stored in a Notes database. Views are tables of
contents of the database. Each row listed in the view represents data taken
from a single document. Each column represents a field or a combination of
fields taken from that document.

All Notes databases have at least one view. Most of them have more than
one view. A view can display all the documents, or it can display a subset
of the documents. Documents can be viewed by categories, such as creation
date and author. Views can present documents sorted on different fields,
for example, sorted by topic or document reference number.

Changing an Existing View
The Document Library template contains a lot of the new Notes Release 4
features such as folders, a navigator, an action bar, and new features related
to views. You are going to look at one of its views, and change parts of it.

The Document Library template should be on your Notes workspace. You
added it to your workspace in the Designing Application Forms chapter.

87

Looking at a View
1. Open the Document Library database.

2. Click the Navigator button. This is what you can see:

The action bar is displayed at the top of the window. It contains buttons
that perform either simple actions or @Formulas. The Navigator button
toggles the display between the Navigator view and the default
standard navigator, which is also known as the outline hierarchy.

The navigator pane displayed on the left-hand side is a graphical
representation of views. In our example, you can see the All Documents
view. In fact, each icon of the navigator is linked to a specific view that
exists in the database.

3. Click on any of the icons displayed in the navigator pane. Notice how
the view pane on the right-hand side changes.

The view pane lists the documents in a table format. The view pane
consists of two parts: the selection column and the documents
themselves.

The selection column shows that the document entitled Response 3 has
not yet been read. Response 2 has been selected, either by a user or as
the result of a search action. Response 1 has been marked for deletion.

The documents are categorized and sorted, depending on the contents
of the Categories field contained in the Document form.

The Internet and LotusScript categories are collapsed, that is, you do
not see the documents listed. The Notes category is expanded. You see
its documents and responses to these documents.

Next to the Redbook document, an icon representing a lock is
displayed. It indicates that this document is a private document. Notes
can represent data using either text or a predefined set of icons.

88 Lotus Notes Release 4.5: A Developer’s Handbook

Looking at the View Design
The Document Library database should still be open.

1. Click on the Navigator button to return to the standard navigator.

2. Choose Design, then Views. The available views are listed in the view
pane.

3. Double-click on the ($All) view to open its design.

Note ($All) is a reserved name for Notes to create the default view All
Documents with its associated icon.

The View Builder window is displayed.

4. Click on the Properties SmartIcon to display the View properties. The
View Builder window and the InfoBox look like this:

You can see the following:

The design pane on the top left-hand side, with the view columns listed
under the SmartIcons.

The programming pane at the bottom of the window.

The action pane on the top right-hand side.

Tip You might need to scroll the right side of the window to the left to see
the action pane.

Looking at the View Columns
Below the row of SmartIcons, you can see a blue arrow icon and the
columns of the view.

This refresh icon is used to look at the result of any design changes you
might have performed. It allows you to test your changes before saving the
new version of the view.

Chapter 5: Viewing the Database 89

The first four data columns do not have any title. The remaining columns
show a title. Those are the column titles users will see when they open the
view.

Column editing and column properties are covered later in this chapter.

Working with the Programming Pane
In the programming pane at the bottom of the window, the View Selection
that defines the view documents is empty. This means that all documents in
this database are listed in the view.

To define a more restrictive view selection:

1. Click the Formula option button.

2. Click the Fields and @Functions push button. It gives you access to:

The fields of all the database forms.

All the @Functions with their help documents.

3. Or, click the Easy option button.

4. Click on the Add Condition...push button. The Search Builder window
is displayed. It allows you to specify search criteria.

5. For example, in the Search for documents where field: section, select
Categories from the drop-down list.

6. In the contains section, type Miscellaneous.

The following figure shows you what it looks like:

90 Lotus Notes Release 4.5: A Developer’s Handbook

7. Click on OK. Notice how the programming pane has changed to reflect
the new search criteria.

8. Click again on the Formula option button. The formula and the
appropriate @Functions are displayed in the programming pane.

9. Use the Easy option button and Add Condition button to specify as
many search criteria as you want, for example:

10. When you are done, close the Search Builder window.

Working with the View Properties
To display the View InfoBox:

1. Click on the Properties SmartIcon to display the InfoBox. It contains
five tabs.

On the Basics tab, the Name of the view is set to a reserved word,
($All). The user will see the name as All Documents in the View
menu item.

Except for the reserved ($All), enclosing a view between parentheses
means that the view is hidden and is used solely for programming
purposes: The user does not see it in the list of views.

2. Specify an alias. You should always use the alias. This is the name you
will use in your code. If the user decides to change the name of the
view, your code will remain unchanged.

3. Specify a comment. The comment entry field is optional, but useful for
maintenance purposes.

Chapter 5: Viewing the Database 91

4. Choose a style. You can display the documents in a view as a calendar
instead of as a table. For example, a calendar view can display a date, a
meeting or appointment time, a duration, and optional text describing
the entry. To display a view as a calendar the first column must be a
Time/Date field.

5. Go to the Options tab. It looks like this:

If you check Default design for new folders and views, it means that the
view will be used as the template when the user creates folders or adds
new views to the database.

The check next to the Show Response documents in a hierarchy will
show all child documents indented under their parent document.

If the Show in View menu checkbox is not selected, it means that the
view is hidden to the users and only used by the application for lookup
purposes.

6. Go to the Style tab.

Several new features have been introduced in Notes Release 4 that you
find in this InfoBox tab.

92 Lotus Notes Release 4.5: A Developer’s Handbook

7. In addition to the color that can be customized for the view
background, columns totals and unread rows, you can now define a
color to be used for alternate rows. And there are a lot more colors to
choose from.

8. If desired, you can remove the selection margin.

9. You can now have up to 5 lines for the column headings.

10. As far as rows are concerned, you can also have up to 9 lines for each
document, to store a large description for instance. In that case, make
sure that the checkbox Shrink rows to content is selected: It eliminates
all the blank lines for documents that do not require the extra space.

11. Go to the Advanced tab.

The advanced tab provides information about the index used to build
the view, when it should be refreshed (here automatically) and when it
should be discarded.

Users will see highlighting next to documents that were added or
modified since they last used the view. The ODBC checkbox is not
selected as there is no unique key built in the view.

12. Go to the Security tab.

In this example, the view can be used by all users that have access to
the database. If you want to restrict its use to only some users or groups
of users, deselect the checkbox and add the users or groups that will be
granted access.

Chapter 5: Viewing the Database 93

Also, you may select the Available to Public Access Users option to
enable non-Notes users to access the view.

13. Close the InfoBox.

Creating Views
Now that you have seen how to browse and change some of the settings
of a view, here is how to create a new view. There are two ways:

Copying an Existing View
To copy an existing view:

1. Open the database where the view you want to copy is located. It can
be in the same database or in another database.

2. On the standard navigator, click on Design, then Views.

3. In the view pane, select the view you want to copy.

4. Choose Edit - Copy to copy the view to the clipboard.

5. Open the database where you want the new view to be created.

6. On the standard navigator, click on Design, then Views.

7. Click on the view pane, then choose Edit - Paste to copy the contents
of the clipboard. The new view is created.

94 Lotus Notes Release 4.5: A Developer’s Handbook

Creating a New View
To create a new view:

1. Open the database to display the standard navigator.

2. Choose Create - View. The Create View dialog box is displayed. All the
settings for the new view are defaulted to those of the default view as
defined in the Options tab of the view properties.

3. Change the view name. Including backslashes in the name will cascade
the views in the View Menu. For example: Marketing\Lotus.

4. If you want to use another view as the default, click on the Options
push button. The Options dialog box is displayed. You can now select a
different view design as the default for your new view.

Note The view created here is a private view. If you want to create a
view available to all users, do not click the Options push button but
instead select the Shared checkbox. The shared views are then listed.

5. If you select the Design now checkbox, the design windows of the new
view are displayed so that you can start your customization
immediately. Otherwise click on the OK button.

Chapter 5: Viewing the Database 95

6. Click on the item Views to store the view you are creating at the top
level of the list or click on the name of another view under which the
new view should appear.

7. If you want your users to have a common private view, select the
checkbox Personal on first use.

The view is shared, which means it is available to all users, but it turns
private as soon as the users access the database.

This is a very effective way to develop and distribute private views to
multiple users.

Editing the View Columns
You are going to edit a few of the columns of the view All Documents to see
some of the column properties.

1. On the standard navigator, click on Design, then Views.

2. Double-click on ($All). The view edit window is displayed.

Categorization
Double-click on the first untitled column to display both the InfoBox to
show the column properties and its values in the programming pane.

The Sorting tab of the InfoBox is displayed in the figure below.

The programming pane shows that the column is equivalent to the value
contained in the Categories field.

96 Lotus Notes Release 4.5: A Developer’s Handbook

The Type option button shows that the column is categorized, which
means:

The documents are sorted on the field Categories.

The value of the field Categories is not displayed on every row but as a
header to the documents in that category.

This is why, on the Basics tab shown in the following figure, the width of
that column can be set to 1 character. Also, the twistie checkbox is selected.
When a user displays the view, an arrow will be shown next to those
categories that can be expanded.

Select the Hide column checkbox if it is only used for programming
purposes (for example, sorting or lookups).

How About Some Icons?
Double-click on the second untitled column to display the InfoBox for that
column. It looks like this:

Chapter 5: Viewing the Database 97

The Display values as icons checkbox has been checked. This means that the
column data is displayed as icons. This is why the width of the column has
a value of 1.

In the programming pane, @Functions are used to set the value of the
column. If the value of the field Scope is set to Private, then the icon
referenced as number 62 will be displayed in the view next to the
document. If the field ExpireDate is not empty, the icon with the number 64
will be displayed. Otherwise, no icons will be displayed (value equal to 0).

Tip All the number references of the available 170 icons are listed in the
document Details: Displaying an icon in a column of the Help database.
Notice that you cannot add any icons to the predefined set.

Multiple Sorting
1. Double-click on the Modified column. You are going to modify the sort

criteria of the column to the settings shown in the following picture:

Follow these steps:

2. Drop down the list of options next to Click on column header to sort.

3. Select the Both option.

4. Check the Secondary sort column check box.

98 Lotus Notes Release 4.5: A Developer’s Handbook

5. Select the Author option as the second-level sort criteria.

The Modified column now has two arrows in the column heading.
When a user uses this view and clicks on the upper arrow of the
Modified column, the column will be sorted in ascending order. When
the user clicks on the lower arrow, the column will be sorted in
descending order.

Resizing the Column Width
Double-click on the Author column to display the InfoBox. The Basics tab is
displayed:

The Resizable checkbox is selected. This means that users will be able to
resize the column by dragging its border if they want to see more than the
11-character width defined by the developer.

Switching to Another View
The InfoBox with the properties for the Author column should still be
displayed.

1. Click on the Sorting Tab.

You are going to introduce a new feature of Release 4 into the view.
A user looking at the All Documents view might want to take a look
at the people who have created the documents. To do so, the user
would typically click on the By Author view or the navigator.

However, it is now possible to provide a different solution:

2. Drop down the list of options next to Click on column header to sort.

3. Choose the Change to View option.

Chapter 5: Viewing the Database 99

4. In the view combobox that is now visible, select the By Author view
from the list of the views that are available in the database. It looks
like this:

Notice the curved arrow that now appears in the heading of the Author
column. This enables users to perform a single click on the column
heading to close the view they are currently working on, and switch to
a new view.

Saving and Testing the View
If the database already contains documents, you do not need to save the
new version of the view. Instead, you can use the Refresh icon. This lets you
see the effect of the changes on the document display.

Otherwise, once you are satisfied with your modifications, press the ESC
key and save the view. Now you can try all the nice features it contains:

Multiple lines.

Twisties.

Multiple sort directions.

Switch to view facility.

Put some of the icons in columns.

100 Lotus Notes Release 4.5: A Developer’s Handbook

Creating and Moving Columns

Copying a Column from Another View
If a column similar to the one you need already exists in another view of the
same database or in a different database, you can just copy it using the
clipboard:

1. Open the design of the view where the column you want to copy is
located.

2. Click on the heading of the column you want to copy.

3. Choose Edit - Copy from the menu bar to store the column definition
on the clipboard.

4. Open the design of the view where you want the new column to be
created.

5. Click the column to the right of where you want the column to be
positioned.

6. Choose Edit - Paste from the menu bar. The column is pasted left of the
highlighted column.

7. Double-click on the column heading to open the InfoBox.

8. Modify the column properties as required and save the column.

Creating a New Column
You can also create a new column. To do so:

1. Open the design of the view you want to modify.

2. If you want to create the new column as the last column of the view,
choose Create - Append New Column.

If you want to create the column at a specific place in the view:

3. Click the column to the right of where you want the column to be
positioned.

4. Choose Create - Insert New Column from the menu bar.

5. Double-click on the column heading to open the InfoBox.

6. Modify the column properties and save the column.

Moving a Column within the View
To move columns within the same view:

1. Open the design of the view.

2. Click on the heading of the column you want to move.

3. Choose Edit - Cut from the menu bar to store the column definition on
the clipboard.

Chapter 5: Viewing the Database 101

4. Click the column to the right of where you want the column to be
positioned.

5. Choose Edit - Paste. The column is pasted into its new location.

6. You can then save the view or folder.

Using Folders

What Is a Folder?
Folders let you store and manage related documents without putting them
into a category, which requires a Categories field in the form used to create
the documents. Folders are also convenient because you can drag
documents to them.

You can keep a folder private, or share it with other users of a database.
No one else can read or delete your private folders. To create private
folders in a database, you must have at least Reader access to the database.
To create shared folders in a database, you must have at least Designer
access.

When you create a private folder, Notes stores it in one of two places:

If the manager of the database has allowed it, your folder is stored in
the database, letting you use the folder at different workstations.

Note To see whether a database allows storage of folders, select the
database, choose File - Database - Access Control, and see whether
Create personal folders/views is turned on.

If the manager has not allowed storage of folders in the database, Notes
stores your folder in your desktop file.

Note If a folder is stored in your desktop file, you cannot use full-text
search in the folder.

Creating and Editing Folders and Folder Columns
Creating or editing a folder is identical to creating or editing a view. The
steps are the same. See the appropriate section in this chapter for more
details.

Using Folders
You can put documents into folders by dragging the documents, or by
using the menu. You may want to use the menu if it is not convenient to
drag, or if you want to manage a large number of documents at once.

102 Lotus Notes Release 4.5: A Developer’s Handbook

To drag documents into a folder:
1. Select the document or documents you want to store.

2. Drag the documents to that folder’s icon in the navigation pane and let
go when the folder is highlighted and the cursor appears as a plus
symbol (+).

3. Repeat steps 1 and 2 to drag documents to another folder.

To put documents into folders using the menu:
1. Select the document or documents you want to store.

2. Choose Actions - Move to Folder.

3. Do one of the following:

Click a folder name in the Choose a folder list to use an existing folder.
Or, to create a new folder, see Details.

4. Do one of the following:

Click Add to put the document into a folder without removing it from
other folders. Or, click Move to put the document into a folder and
remove it from other folders.

5. Repeat steps 4 through 7 to put documents into more folders.

Here Again the Action Bar
As well as in forms, you can create an Action Bar in views and folders. In
general, the actions should either:

Affect several documents or all documents displayed in the view. This
could be storing in a Manager folder all documents created by your
manager, for example.

Represent the actions the user will most often perform.

As in forms, you must make sure that the actions you create will fit in the
Action Bar and watch out for the screen resolution available to your users.

Creating a Button on the Action Bar
You are going to create an action that performs a DocLink between two
documents. The documents do not have a child-parent relationship.

To create a button in the Action Bar:

1. Open the design of the ($All) view.

2. Choose Create - Action. The InfoBox for the Action properties is opened
and you now have access to the programming pane.

Chapter 5: Viewing the Database 103

3. Fill in the Basics tab and programming pane as shown here:

Here are some explanations concerning the formula:

The document selected from the view is copied to the clipboard:

@PostedCommand([EditMakeDocLink]);

The form Document is created:

@PostedCommand([Compose]; “”; “Document”);

The macro goes to the field Body:

@PostedCommand([EditGotoField]; “Body”);

It pastes the doclink into the RichText field:

@PostedCommand([EditPaste]);

It positions the cursor back at the top entry field:

@PostedCommand([EditTop])

Testing the Formula
To test the formula:

1. Select the view All Documents.

2. Click on one of the documents to highlight it.

3. Click on the Link Documents button on the Action Bar. The document
is opened for creation, the doclink is pasted, and the cursor is
positioned in the first entry field.

4. Double-click on the DocLink to open the document which was selected
in the view.

104 Lotus Notes Release 4.5: A Developer’s Handbook

Properties of Actions and the Action Bar
Actions and Action Bars have properties that you can display by selecting
the action in the Action pane of the view or folder design window.

The properties are identical to the ones found in the Form Action Bar.

Looking at the Properties of Documents
You can look at the properties of documents when a view is displayed.

1. Select any one of the documents displayed.

2. Click on the Properties SmartIcon to display the InfoBox.

3. Click on the Fields tab to see the list of fields for that document and
their values.

4. When files are attached into a document, a field called $FILE exists.
Scroll down the right list box to see the file information. Here you
can see the file name and size and the platform on which it was
created.

There are other keywords, such as $Revision, $Links, $UpdatedBy,
and $Anonymous.

Note As you can see, all the reserved fields start with a $ sign: Make
sure not to prefix any of the fields you create with this character.

The field replication enhancement of Release 4 allows for a faster
transfer of information across servers or between the servers and
workstations. A new indicator is now attached to each field in all
documents, which is Seq Num (or sequence number). If you have a
replica of a server database, compare the values of the sequence
number for fields of a replicated document. If their values are different,
this means that the field containing the lowest value will be modified at
the next replication.

Chapter 5: Viewing the Database 105

Tip To benefit from field replication, once you are finished developing
your form, create a document using this form and check the values of
this indicator for all fields in the document. It will help you separate
fields that are frequently updated (and replicated) from the ones that
are not. This could have a major impact on the replication throughput,
especially if some of the fields contain large volumes of information
such as graphics, large attached files or multimedia objects (video or
sound).

Using the Navigator
One of the most exciting new enhancements in Lotus Notes Release 4 is the
navigator. Navigators allow the user to easily access views, Notes data, or
other applications. Navigators enable the developer to create a highly
graphical user interface without using an external tool such as Visual Basic.

The following figure shows an example of a navigator:

Navigators can contain text, graphics, and images. When these objects are
selected, they call other Notes functions, which can do one of the following:

Display a different view hierarchy.

Display a different document.

Run an @Function formula.

Run a LotusScript.

Launch an external application.

106 Lotus Notes Release 4.5: A Developer’s Handbook

Navigator Objects
Navigators can contain:

Graphic objects that you create in another program and paste into a
navigator either as graphic backgrounds or as graphic buttons.

Create a graphic background if you plan to use the picture for display
only or as the foundation for navigator objects. Create graphic buttons
if you want an action to occur when users click the button.

Objects that you draw using the following navigator drawing tools:

Rectangle (rounded)

Polygon

Polyline

Ellipse

Textbox

Button

Hotspot polygon

Hotspot rectangle

You can create the objects in the Navigator Builder. Two hotspot objects
allow you to create either transparent rectangles or transparent
polygons that are visible only when touched or clicked by the user.
These are especially useful when you want to attach actions to different
parts of a graphic background.

Adding an Action to a Navigator
You can add actions to all navigator objects except to those pasted as
graphic backgrounds.

Notes provides simple actions that are easy to create and do not require any
programming knowledge. A navigator can perform one of the following
functions:

Open another navigator. Clicking the object brings up the selected
navigator.

Open a view. Clicking the object brings up the selected view in the view
pane.

Serve as an alias for a folder. Clicking the object displays the contents of
the designated folder in the view pane.

Open a link. Clicking the object opens the database, view, or document
link you pasted here.

Chapter 5: Viewing the Database 107

In addition, a navigator can perform the following functions:

It can run an @Function formula. This requires knowledge of the Notes
macro language, but offers more choices than the simple actions
supplied by Notes. Clicking the object runs the formula associated with
the object.

It can run a LotusScript program. This is a more complex function to
create, but offers the most flexibility. LotusScript programs can perform
tasks that are not possible with @Function formulas, such as the ability
to manipulate a database access control list (ACL). Clicking the object
runs the LotusScript program associated with the object.

A Navigator Example
So let’s look at a simple example of a Navigator.

1. Create a new database by choosing File-Database-New from your Notes
workspace.

2. In the New Database window, click the Room Reservations (R 4)
template in the window listing the available templates.

3. In the Title field, type a title for the new database, for example, Room
Reservations.

4. In the File Name field, type a file name for the new database, for
example, roomrsv.nsf.

The following figure shows the completed New Database window:

5. Click OK.

6. Press the ESC key to leave the information window.

The icon for the new database is added to your Notes workspace.

You can see a two-pane window.

108 Lotus Notes Release 4.5: A Developer’s Handbook

7. Select View-Document Preview to get a three-pane window. It looks
like this:

8. Click one of the objects in the navigation pane. Notice how the
view-browsing pane changes on the right-hand side. In this database,
all hotspots are connected to a simple action, which is to open a view.
However, you can add other objects and actions to navigator objects, as
mentioned before.

9. Close the database by pressing ESC.

Creating a Navigator
In the following, we are going to use the Room Reservation template. It
allows workgroups to schedule and reserve resources such as conference
rooms or office equipment. This template is easy to modify, so this should
be an easy-to-follow introduction to navigators.

We will create graphic objects as background and as a button. The button
has an action associated with it.

Copying a Navigator
You can add a custom navigator to your database in one of three ways.
You can:

Copy an existing navigator from the same database.

Copy an existing navigator from another database.

Create a new navigator.

Whichever way you choose, you need designer access or higher to the
database.

Chapter 5: Viewing the Database 109

In our example, we will copy an existing Main Navigator to a New Main
Navigator and then modify the new navigator.

To copy a navigator:

1. Select the Room Reservations database and choose View - Design.

The following window is shown:

2. In the navigation pane, click Navigators under Design.

3. Click the navigator you want to copy in the Navigators list. In our
example, only one navigator is listed. It is called Main Navigator.

4. Choose Edit - Copy.

5. Choose Edit - Paste. A message is displayed:

6. Click Yes to confirm.

The view pane now lists two navigators: The Main Navigator and a
copy of the Main Navigator.

110 Lotus Notes Release 4.5: A Developer’s Handbook

Renaming a Navigator
You can rename the new navigator by following these steps:

1. Double-click the new navigator listed in the right pane. The following
message is displayed:

2. Click OK.

3. Choose Design - Navigator Properties to display the InfoBox.

4. In the Name field, type a name for the new navigator, for example,
New Main Navigator. The InfoBox looks like this:

The InfoBox also allows you to change other properties, such as the
initial view or folder, or the background color.

5. Close the InfoBox.

Creating Graphic Objects
We will now create graphic objects as background and as a button.

Creating a Graphic Background
First, create a graphic background.

1. If you do not have a graphic object available, use any graphic editor to
create a simple graphic object. Or use any graphic object you might
have.

2. Choose Edit - Copy to copy the graphic object to the clipboard.

Chapter 5: Viewing the Database 111

3. The Room Reservations database should still be open, with the three
panes displayed. Choose Create - Graphic Background. The graphic
object is pasted into the background.

Tip You can only have one graphic background in one navigator. You
cannot move the graphic background once it has been pasted.
Therefore, when you create the graphic object, consider the position
and size of its components before you paste it as a graphic background.

Tip To remove a graphic background, choose Design - Remove
Graphic Background.

Creating a Graphic Button
Next, try a graphic button.

1. If you do not have a graphic object available, use any graphic editor to
create a simple graphic object. Or use any graphic object you might
have.

2. Choose Edit - Copy to copy the graphic object to the clipboard.

3. The Room Reservations database should still be open, with the three
panes displayed. Choose Create - Graphic Button. The object is pasted
as a button.

4. Move the graphic object to any position on the window by dragging it.

5. Choose Design - Object Properties to display the InfoBox.

6. Check the Lock size and position checkbox. The InfoBox now looks like
this:

7. Select the HiLite tab.

112 Lotus Notes Release 4.5: A Developer’s Handbook

8. Check the Highlight when touched and Highlight when clicked check
boxes. The InfoBox now looks like this:

9. Close the InfoBox.

Tip You can remove a graphic button by selecting it and pressing the
Delete key on your keyboard.

Adding an Action to a Navigator Object
You can add actions to navigator objects. It is very easy to add a simple
action to an object. For example, if you want to add a simple action that
opens another navigator, follow these steps:

1. Create another navigator by choosing Create - Design - Navigator.

2. As an example, choose Create - Button to create a button object.

3. Draw a box in the empty window. The InfoBox for the button is
displayed.

4. In the Name field, type a name for the button.

5. In the Caption box, type some descriptive text for the button. Three
additional tabs are available to specify more button features, such as
font and button face color.

6. Close the InfoBox. You can see the box displayed, with the caption text
showing inside.

7. Choose File - Close.

8. Click Yes to save the new navigator.

9. Assign a name to the new navigator. You should now see it listed in the
view pane.

10. Open the new navigator.

11. Choose Create - Hotspot Rectangle, for example.

12. Draw a rectangle in the window. The InfoBox opens. Notice that the
Define field in the bottom pane already shows HotspotRectangle1.
Also, the simple action option button is selected.

Chapter 5: Viewing the Database 113

13. From the Action drop-down list, choose Open another Navigator.

14. From the drop-down list next to the Action drop-down list, choose
another navigator. It now looks like this:

15. Choose File - Save.

16. Close the InfoBox.

17. Press ESC and confirm that you want to save your changes.

Creating a Text Box
Next, create a text box for the new hotspot.

1. Open the new navigator.

2. Choose Create - Text.

3. Draw a box anywhere in the window, close to the hotspot. The InfoBox
opens.

4. In the Name field, type a name for the text box, for example, text1.

5. In the Caption box, type a caption describing the text box.

6. If required, check the Lock size and position check box.

7. Close the InfoBox. You should see the text box, with the caption text
displayed inside.

8. Press ESC to leave the window and confirm that you want to save your
changes.

Adding an Action Using LotusScript
If you require a more complicated action to be added to a graphic object,
you can create the action by using an @Function or a LotusScript program.

To add an action using LotusScript, follow these steps:

1. Select a graphic object.

2. Choose the Script option button.

3. Make sure that Click is selected in the Event area. This ensures that the
LotusScript program is run when the user clicks the object.

114 Lotus Notes Release 4.5: A Developer’s Handbook

4. In the edit box, type the following:

Sub Click(Source As Navigator)
Dim db As New NotesDatabase("", "ROOMRSV.NSF")
Dim view As NotesView
Dim doc As NotesDocument
Dim capacity, room As NotesItem
Dim people As Integer
Dim msg As String
people = Cint(Inputbox("How many people are
 estimated to attend the meeting ? "))
Set view = db.GetView("Resources")
Set doc = view.GetFirstDocument
While Not (doc Is Nothing)
 Set capacity = doc.GetFirstItem("Capacity")
 Set room = doc.GetFirstItem("ResourceName")
 If (Cint(capacity.text) => people) Then
 msg = msg + room.text + "(" + capacity.text + ") "
 End If
 Set doc = view.GetNextDocument(doc)
Wend
If msg = "" Then
 Messagebox("No room meets your request.")
Else
 Messagebox(msg + " meet your request.")
End If
End Sub

Note Notes compiles the script when you close it. Compiling is the process
by which a script is translated into executable code.

Testing a Navigator
To test a newly designed navigator, follow these steps:

1. Open the new navigator.

2. Choose Design - Test Navigator.

3. Highlight and click each object to see if the highlighting and the actions
are as expected.

4. If the test is not satisfactory, choose Design - Test Navigator again to
return to design mode and make changes as required.

5. Next, test the navigator using some documents. For navigators whose
actions perform multiple steps or complex tasks, split the process into
several smaller tasks and create an action for each task. Test and fix
each small task first. When everything is working correctly, combine
the formulas into one, and then test the navigator again.

Chapter 5: Viewing the Database 115

Including a Navigator in the View Menu
To display a navigator in the View - Show submenu when a database is
opened, follow these steps:

1. Open the database that contains the navigator.

2. Choose File - Database - Properties.

3. Click the Launch tab.

4. To display the navigator in the navigation pane, choose Open
designated navigator under On Database Open. If you want to display
the navigator in a full-screen window, select Open designated navigator
in its own window.

5. From the Navigator drop-down list, select the navigator you want
displayed in the view.

6. Close the InfoBox.

7. Choose File - Close.

When the database is opened, the View - Show submenu should now
list the navigator.

116 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 6
Programming in Lotus Notes

There are a number of different ways of creating Notes applications, both
within Notes and outside of Notes. Within Notes you can create new
applications by:

Setting up a new database using one of the application templates
shipped with Notes, and using it as-is, or customizing it for your own
use. The templates shipped with Notes use a wide variety of Notes
features, and may be used as examples of how to write your own
applications. They are described briefly below.

Creating a new application from scratch using the Blank database
template, and then developing your own forms and views.

When programming in Notes, you can use any of the following:

Simple Actions

Formulas

LotusScript

LSXs (LotusScript Extensions)

In addition, it is possible to develop Notes applications by programming
using External Development Tools such as:

Lotus Notes C API

Lotus Notes C++ API

Interflox API for REXX (OS/2 only)

Your choice of development tools will depend on the application, the skills
and experience of your developers, and the environment in which you are
working.

Chapter 6: Programming in Lotus Notes 117

If you have a professional development environment already, you may be
more likely to leverage existing skills and use the C/C++ or Visual Basic
APIs. Corporate developers and advanced Notes users are more likely to
use built-in Notes tools such as @Functions and LotusScript.

Templates

The following section lists some of the application templates supplied with
Notes. You may use them as-is, or customize them to your needs.

Approval Cycle
This database provides a place from which organizations can manage their
electronic approvals. Using the ApprovalLogic subform, a different form
can be designed for each type of approval while all approval forms use the
same approval logic. Consequently, when an organization changes its
approval policies, only the ApprovalLogic subform will need to be
changed, allowing for fast response to changing business needs.

Designers will derive several benefits from using this database:

They will not need to rewrite approval logic for each approval form
because it is already provided in a subform.

The approval logic provided on the subform is extremely flexible.
Because all approval situations are not identical, the designer will fill
out an application profile for each approval form, which tells the
ApprovalLogic subform how this particular approval should be
processed.

Notes Release 4
Programmability Map

Less

More

Notes
C API

Notes
@Functions

Notes
C++ API

LotusScript
Notes Classes

O
b

je
ct

O
rie

nt
a

tio
n Notes

LSX

118 Lotus Notes Release 4.5: A Developer’s Handbook

When organizational approval policies change, the designer does not
need to change every form. Instead they can either edit the application
profile documents or, if necessary, they can modify the ApprovalLogic
subform.

Discussion
This template creates an electronic conference room used by workgroups to
share their thoughts and ideas. The template includes archiving capabilities
and an “Interest Profile” that allows users to automatically mail themselves
document links to topics of interest. Also of interest to developers is the
ability to migrate a Notes Release 3 version of the database.

Document Library
A Document Library application is an electronic filing cabinet that stores
reference documents for access by a workgroup. The database might
contain anything from environmental impact statements for a group of
engineers to financial statements for a group of loan officers.

In this database, developers will find examples of:

Review Cycle: Used to route a document to a series of recipients.

Document Archiving: Used to move expired documents to an archive
database.

The template is also available for specific application suites, listed below.
These templates automatically launch, store, and support review cycles of
documents created with the following suite products that include word
processing and spreadsheet applications:

SmartSuite Library

Microsoft Office Library

Note Databases created with this template can only launch the objects on
the Windows platforms. Objects can be viewed on all platforms.

Personal Journal
There are two basic types of documents in the Personal Journal template —
a Journal Entry and a Clean Sheet. The main difference is that the Journal
Entry has a Title field which is displayed in the view, whereas the Clean
Sheet does not.

When you have finished creating a Clean Sheet, choose File - Save and you
will be prompted for the Title of the entry. If you ever need to change the
Title of a clean sheet document — just choose the “Doc Info...” button in the
document.

Chapter 6: Programming in Lotus Notes 119

Other features of interest to the developer include:

The “All Documents” view shows all documents that have been created
in the personal journal. You can click on the Title column heading to
sort alphabetically by title and then click again to restore the View to its
original state. Similarly, you can click on the date column to get the
documents in descending creation order.

If you are writing a long document and want to keep multiple versions,
choose the Save As New Version menu item from the File menu when
you are editing the document. By doing this you will be a saving a
“hierarchy” of documents with the newest version on top and the older
versions underneath. Any time you move the document to a folder, all
its prior versions will go along with it.

You can rename a document without opening the document from any
of the Views or Folders by choosing the Doc Info... button in the View
or folder.

Room Reservations
Reservation Scheduler is an application designed to allow workgroups to
schedule and reserve physical resources such as conference rooms or office
equipment.

InterNotes Web Navigator
The InterNotes Web Navigator is a Notes Release 4 feature that allows
you to navigate through pages on the Web directly from your Notes
environment. The Web Navigator is much more than a Web browser — it
combines the features of a Web browser with the powerful capabilities of
Lotus Notes.

Developers should look at this template as a good example of the use of
Navigators.

Shared Template Components
This template includes components which are used in multiple other
templates. It is not intended to be used in creating new databases. When a
design refresh is performed on some of the databases created from other
templates, elements of this template may be pulled in. For example, the
design elements used for archiving are refreshed from this template, into
the Discussion template.

Items of interest to developers are as follows:

Forms
Archive Profile (indicates archive parameters)

Archive Log (lists docs that were archived during each run)

120 Lotus Notes Release 4.5: A Developer’s Handbook

Views
Archive Logs

($Profiles)

Agents
Edit Archive Profile (create/edit the Archive Profile doc)

Mark Document as Expired (toggle ExpireDate on/off)

Periodic Archive (background agent - picks up inactive and expired docs)

Archive Selected Documents (archives selected docs)

ACL Roles
ArchiveManager (is allowed to edit Archive Profile, and see Archive Logs)

Programming in Notes

The following section details the differences between the three integral
programming interfaces to Notes. It will give you a short overview of
Notes’ Simple Actions, and it will compare LotusScript and @Functions.

Simple Actions
These are predefined actions which allow you to define a sequence of
actions without requiring any programming knowledge. They are ideal for
the end user who wishes to automate some routine tasks. In addition, they
provide significant power to the developer and eliminate manual coding.
The simple actions available are:

Copy to database

Copy to folder

Delete from database

Mark document read

Mark document unread

Modify field

Modify fields by form

Move to folder

Remove from folder

Reply to sender

Run agent

Chapter 6: Programming in Lotus Notes 121

Send document

Send mail message

Send newsletter summary

Formulas
Notes formulas are expressions that have program-like attributes. For
example, you can assign values to variables and use a limited control logic.
The formula language interface to Notes is provided through calls to
@Functions. If you are familiar with the macro language in other products
such as Lotus 1-2-3 then you will quickly become proficient in the
@Functions in Lotus Notes.

@Functions are a powerful tool when you want to manipulate the current
Notes document in an application, since the developer need not obtain the
context for the document.

LotusScript
LotusScript offers you a wide variety of features of a modern, fully
object-oriented programming language. Its interface to Notes is through
predefined object classes. Notes oversees the compilation and loading of
user scripts and automatically includes the Notes class definitions. This
allows you to code your programs in an efficient way. While @Functions
are ideal for coding simple logic, for example input translation or input
validation of a field, LotusScript provides the ability to code loops, select
(case) constructs and a lot more. Also, automatic indentation which follows
the program logic in IF-THEN-ELSE and loop constructs is performed by
the Integrated Development Environment (IDE) and makes your programs
more readable and easy to maintain.

Furthermore, the hierarchy of the Notes Classes represents the flow of
control you follow in the user interface if you step down from a database
icon to a view, and further on to a document and to a specific field within
this document. For example, if you are coding in LotusScript you will start
with the UIWorkspace class and go down to the UIDocument class which
represents the currently open document. Once you have set this object
variable you have access to the fields of the document. The same principle
applies if you are working with the back-end classes of Lotus Notes, which
represent the objects you might wish to work with that are not in the user
interface. You will start at the NotesSession class and go down through the
NotesDatabase class to the NotesDocument class.

122 Lotus Notes Release 4.5: A Developer’s Handbook

Here is a short summary of the benefits offered by LotusScript:

Superset of BASIC

Since LotusScript is a superset of the BASIC language, it is easy to
learn, especially for Visual Basic users. You can write sophisticated
scripts by using conditions, branches, subroutines, while loops, and
others.

Cross-platform

LotusScript is a multi-platform BASIC-like scripting language. Major
platforms are supported, such as Windows, Macintosh, OS/2 and
UNIX. You can create just one application, which can be used on any
platform.

Object-oriented

Notes Release 4 provides Notes Object Classes that are available to
LotusScript. You can write scripts to access and manipulate these
objects. The scripts are event-driven, such as by an action, clicking the
object or button, opening a document, or opening a view.

Included in Lotus Applications

Since LotusScript is supported by all the Lotus products, these products
are able to access Notes classes using a Notes-supplied LotusScript
extension. Another advantage is that you only need to learn one
language to become proficient in writing scripts in other Lotus
products.

OLE Support

Notes can be the perfect container for SmartSuite documents and other
OLE-enabled applications, such as Microsoft Office. You can use
external OLE 2.0 automation objects by scripting them, such as 1-2-3
worksheet objects.

Notes registers itself as an OLE automation server. External
applications can use these objects in scripts to create and reference
them.

LotusScript is able to combine all the parts and provide the means for
controlling and manipulating objects.

Coexistence with Notes @Functions

Lotus continues to support @Functions. LotusScript can work with
them.

Chapter 6: Programming in Lotus Notes 123

Integrated Development Environment

The LotusScript Integrated Development Environment (IDE) provides
an easy-to-use interface to create, edit, and debug scripts, and to
browse variables and properties of classes. This allows you to write
more complex scripts in Notes.

Extendable through LSXs

You may extend LotusScript by writing your own classes, which are
called LotusScript extensions (LSXs). Creating your own LSXs allows
you to expose custom functionality to LotusScript developers in
precisely the same way as Notes functionality is exposed. You might
use this, for example, if you have customer processing logic, such as a
proprietary pricing process, you wanted to make available to Notes
developers.

Using LotusScript Notes Classes
This section describes the LotusScript Notes classes. Notes provides Object
Classes for Notes that are available to LotusScript so that you can
manipulate Notes Objects using Notes functions in your script. You will see
how to manipulate data in Notes and which actions to take to make your
changes effective and consistent.

If you would like to know the method, property or class in detail, refer to
the appropriate chapter in the Programmer’s Guide for Notes Release 4.

Notes Classes
Two types of Notes object classes are provided:

Front-end UI (user interface) classes

Back-end classes

Understanding Front-End and Back-End Classes
First of all you need to consider how data are stored in Notes. You can
think of a document within a Notes database as a record, but a Notes
document is more sophisticated than a typical database record. It may
contain rich text, pictures, objects, and many other types of information. For
example, if you access a Notes document using the back-end classes you
may manipulate the contents of the fields, may add new fields to the
document, or remove fields from the document. However, if you make
such changes the input translation and input validation formulas contained
in a form are not executed.

124 Lotus Notes Release 4.5: A Developer’s Handbook

On the other hand, if you work with Notes’ front-end classes your changes
to the fields are visible to the user. For example, if you invoke the Refresh
method of the NotesUIDocument class the input translation and input
validation formulas are carried out.

The following picture represents a back-end document and shows how data
is stored in a Notes database:

The fields Field1 and Field2 have been defined in the form which was used
to create this document. The name of this form is stored in the field Form. If
you change the value of the field Form using an agent or LotusScript the
document will be presented to the user using the other form when it is
opened next time.

Note If there is no form field within a document Notes will display such a
document using the database’s default form. If there is no default form, the
document cannot be displayed.

Field $UpdatedBy has been created by Notes and contains a list of users who
have worked on this document.

Note Field names starting with $ are used and maintained by Notes.

Front-End UI Classes
UI classes provide features to emulate user actions. They also provide
access to objects such as Workspace, Database window, Document
window, Field, and Rich-Text Field.

NotesUIWorkSpace
Represents the current Notes workspace window.
NotesUIDatabase
Represents the currently used database.

Document

contents of field1

Field1

contents of field2

Field2

Name of the form to be used
with document

Form

Susan

$UpdatedBy

Chapter 6: Programming in Lotus Notes 125

NotesUIView

Represents the currently used view.

NotesUIDocument

Represents the document that is currently open.

The following Notes classes have only events associated with them.

Button

Objects of this class represent a button.

Field

Objects of this class represent a field.

Navigator

Objects of this class represent a navigator.

Back-End Classes
Back-end classes represent Notes objects such as Database, View, Agent,
Document, Item. You can use these classes to manipulate Notes elements
directly in LotusScript. The following back-end classes exist.

NotesSession

Represents the Notes environment of the current script, providing
access to environment variables, Name & Address Books, information
about the current user, and information about the current Notes
platform and release number.

NotesDbDirectory

Represents the Notes databases on a specific server or local machine.

NotesDatabase

Represents a Notes database.

NotesACL

Represents the Access Control List (ACL) of a database.

NotesACLEntry

Represents a single entry in an Access Control List. An entry may be for
a person, a group, or a server.

NotesAgent

Represents an agent.

NotesView

Represents a view or folder of a database and provides access to
documents within it.

126 Lotus Notes Release 4.5: A Developer’s Handbook

NotesViewColumn

Represents a column in a view or folder.

NotesDocumentCollection

Represents a collection of documents from a database, selected
according to specific criteria.

NotesDocument

Represents a document in a database.

NotesItem

Represents a piece of data in a document. All of the items in a
document are accessible through LotusScript, regardless of what form
is used to display the document in the user interface.

NotesRichTextItem

Represents an item of type rich text.

NotesEmbeddedObject

Represents embedded objects, linked objects, and file attachments.

NotesDateTime

Represents a date and time. Provides a means of translating between
the LotusScript date-time format and the Notes format.

NotesDateRange

Contains a range of NotesDateTime. An object of type NotesDateTime
represents a given date and time.

NotesLog

Enables you to record actions and errors that take place during a
script’s execution. You can record actions and errors in a Notes
database, a mail memo, or a file (for scripts that run locally).

NotesNewsLetter

Represents a document that contains information from, or doclinks to
several other documents. All of the NotesItem properties and methods
can be used on a NotesRichTextItem, too.

NotesForm

Represents a form in a Notes database.

NotesInternational

This class contains properties which provide information about the
international settings, for example date format, of the environment
Notes is running in.

Chapter 6: Programming in Lotus Notes 127

NotesName

Properties of this class contain information about a Notes user name.

NotesTimer

Objects of this class represent a timer in Notes.

Class Hierarchy
There is a hierarchical relationship for object classes. Higher hierarchical
classes contain the lower ones. The class hierarchy looks like this:

NotesUIWorkspace

NotesUIDocument

NotesDocument

NotesDocument
Collection

NotesUIView

NotesDatabase

NotesInternational

NotesLog

NotesNewsletter

NotesDateRange

NotesForm

NotesAgent

NotesAcl

NotesView

NotesAclEntry

NotesUIDatabase

NotesDateTime

NotesSession

NotesDbDirectory

NotesViewColumn

NotesItem NotesRichTextItem NotesEmbeddedObject

LotusScript Classes

NotesName

NotesTimer

128 Lotus Notes Release 4.5: A Developer’s Handbook

Each class has defined members, properties and methods. Using these
members, you can access other objects. The relationship of containment and
access means that the higher class has the property or the method to access
the lower one.

For example, you can see all the views when you open the database.
This means that the opened database(object) in the workspace includes the
views(object). Furthermore, you can see the documents when you select
one of the views. This means that your selected view(object) contains the
documents(object). This hierarchy is important when using Notes classes.

Let’s look at some examples of code which use classes.

Example 1: Getting the text of the Subject field

Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Dim item As NotesItem
Set db = session.CurrentDatabase
Set view = db.GetView("Main View")
Set doc = view.GetFirstDocument
Set item = doc.GetFirstItem("Subject")

First we declare the variable session as types of NotesSession class, and New
is used to create an instance of that class.

Variables db, view, doc, item we declare as types of NotesDatabase, NotesView,
NotesDocument, NotesItem classes respectively.

To get the text of the subject field, we need to follow the hierarchical path
from the top to the lower one. In this example we go from NotesSession class
to NotesItem class:

NotesSession - NotesDatabase - NotesView - NotesDocument - NotesItem.

We initialize the object reference variable db with the property
CurrentDatabase of the higher level class.

Then we set the object variable view using the GetView method.

The next statements are the same as before, we use the methods
GetFirstDocument and GetFirstItem to get the objects in the lower hierarchical
class.

Chapter 6: Programming in Lotus Notes 129

Example 2: Disabling a role for a person

Dim session As New NotesSession
Dim db As NotesDatabase
Dim acl As NotesACL
Dim entry As NotesACLEntry
Set db = session.CurrentDatabase
Set acl = db.ACL
Set entry = acl.GetEntry("Gina Widmann")
Call entry.DisableRole("Auditor")
Call acl.Save

To access the personal ACL data, you need to follow the hierarchical path
from the top to the lower one. This example steps from the NotesSession
class to the NotesACLEntry class:

NotesSession - NotesDatabase - NotesACL - NotesACLEntry.

The object that you would like to manipulate has methods or properties to
handle its own data. The first seven lines of this example are similar to
Example 1. The eighth line uses the DisableRole method of the
NotesACLEntry class to disable the role (“Auditor” for a person) “Gina
Widmann.”

Example3: Getting the subject field of all documents

Dim db As New NotesDatabase("Server","db.nsf")
Dim dc As NotesDocumentCollection
Dim doc As NotesDocument
Dim item As NotesItem
Dim subject As String
Set dc = db.AllDocuments
Set doc = dc.GetFirstDocument()
While Not(doc Is Nothing)
 Set item = doc.GetFirstItem("Subject")
 subject = item.text
 Set doc = dc.GetNextDocument(doc)
Wend

The earlier two examples start at the NotesSession class, but to access an
existing database when you know its server and file name, you can get the
database object directly as shown in the first line. This illustrates a unique
feature of writing Notes applications in LotusScript as opposed to the
formula language: You can access any database from within a script. The
following sequence is the same as in the earlier examples. The NotesDatabase
class contains the NotesDocumentCollection class, which contains
NotesDocument:

NotesDatabase - NotesDocumentCollection - NotesDocument - NotesItem.

130 Lotus Notes Release 4.5: A Developer’s Handbook

We use the AllDocuments property of the NotesDatabase class to get all the
documents in the database.

Next, we use the GetFirstDocument method of the NotesDocumentCollection
class to get the first document in a collection.

Then we use the GetNextDocument method of the NotesDocumentCollection
class to get the document immediately following the earlier document in a
collection. If a document does not exist in a collection, the GetNextDocument
method returns Nothing.

Using the Object Browser
Notes provides an object browser you can use when working with
LotusScript Notes classes.

To display the browser:

1. Go to the design mode.

2. Select an object and click on the Script button in the programmer pane.

3. Click on the Show Browser button.

You can select the following parts from the browser drop-down listbox:

LotusScript Language

Notes: Classes

Notes: Constants

Notes: Subs and Functions

Notes: Variables

OLE Classes

Chapter 6: Programming in Lotus Notes 131

Although you can list the LotusScript built-in functions, as well as all the
classes and their methods and properties in the browser listbox, you do
have to know the syntax of their usage. The browser does not cover the
syntax in any detail. However, the browser will help you write the script.
You do not need to check the manual every time. And you can also get
context-sensitive help by selecting the property, method, or event you are
interested in and pressing the F1 key.

Note You will need the full Notes help file on your disk if you are not
connected to a network.

For example, the browser is useful in the following situations:

You are not sure of the spelling of the functions, methods and
properties.

You are not sure of the relationships of the Notes classes.

You would like to confirm which constants are available.

You are not sure of the type of the return value from functions or
methods.

You need to know what functions are available.

Event Programming With LotusScript

When you program in Lotus Notes you add your LotusScript code to Notes
objects. Your code is executed by the occurrence of an event to the objects
such as click a button, open a document, close a document, or entering data
in a field.

You can write a very simple script for an object such as a button, for
example:

Sub Click(Source As Button)
 MessageBox("Welcome to LotusScript")
End Sub

This script just shows a message box when you click the button.

Programmable Objects
The following table outlines the programmable objects in Notes. The third
column specifies whether the object supports scripts, formulas, or both.
Before you write a script or formula, make sure that a simple action won’t
do the task.

132 Lotus Notes Release 4.5: A Developer’s Handbook

Scope Notes object Type

Workspace SmartIcons® Formula

Database Replication formula Formula

Agent Both

View design Form formula Formula

Selection formula Formula

Column formula Formula

Action Both

Hide action formula Formula

Form design Window title formula Formula

Section title formula Formula

Section access formula Formula

Insert subform formula Formula

Hide paragraph formula Formula

Action Both

Hide action formula Formula

Event Both

Button Both

Hotspot Both

Navigator design Hotspot Both

Layout region design Hotspot Both

Field design Default value formula for editable field Formula

Input translation formula for editable field Formula

Input validation formula for editable field Formula

Value formula for computed field Formula

Keyword field formula Formula

Event Script

Rich text field Button Both

Hotspot Both

Section title formula Formula

Hide paragraph Formula

Chapter 6: Programming in Lotus Notes 133

Events
Some Lotus Notes objects have events associated with them. The following
is an overview of which events are supported for a specific object.

Database View Form Field Button Action Agent

Click x x

Entering x

Exiting x

Initialize x x x x x x x

Objectexecute x x

Postdocumentdelete x

Postdragdrop x

Postmodechange x

Postopen x x x

Postpaste x

Postrecalc x

Queryaddtofolder x

Queryclose x x x

Querydocumentdelete x

Querydocumentundelete x

Querydragdrop x

Querymodechange x

Queryopen x x

Queryopendocument x

Querypaste x

Queryrecalc x

Querysave x

Regiondoubleclick x

Terminate x x x x x x x

Event Type and Sequence

Database object
The Database object has the following events:

Initialize (when it is being loaded)

Postopen (after it is opened)

Querydocumentdelete (before deleting a document)

134 Lotus Notes Release 4.5: A Developer’s Handbook

Querydocumentundelete (before undeleting a document)

Postdocumentdelete (after deleting a document)

Queryclose (before it is closed)

Terminate (when it is being closed)

View object
The View object has the following events:

Initialize (when it is being loaded)

Queryopen (before it is opened)

Postopen (after it is opened)

Queryopendocument (before a document is opened)

Querydragdrop (before a drag-drop operation in a calendar view)

Pastedragdrop (after a drag-drop operation in a calendar view)

Querypaste (before a document is pasted into the view)

Postpaste (after a document is pasted into the view)

Queryaddtofolder (before a document is added to a folder)

Regiondoubleclick (after the region is double-clicked in a calendar
view)

Queryrecalc (before the view is recalculated)

Queryclose (before the view is closed)

Terminate (when the view is closed)

Form (document) object
The Form object has the following events:

Initialize (when it is being loaded)

Queryopen (before it is opened)

Postopen (after it is opened)

Postrecalc (after it is refreshed)

Querysave (before it is saved)

Querymodechange (before changing to or from edit mode)

Postmodechange (after changing to or from edit mode)

Queryclose (before it is closed)

Terminate (when it is being closed)

Chapter 6: Programming in Lotus Notes 135

Example
Let’s try to add an action to the Form (document) object and use the
Postopen event.

Note You should try the following example by creating a temporary
database based on the Blank template so as not to corrupt any existing
databases.

1. Select the database and choose Create - Design - Form. The form
design window is opened and the cursor is blinking at the top
left-hand side.

2. Enter CREATOR: at the cursor blinking position.

3. Choose Create-Field. The InfoBox used to set the properties of a field
appears.

4. Enter CREATOR in the Name: field of the InfoBox box, and close
the box.

5. Choose Untitled(Form) from the Define: drop-down combo box in
the programmer pane.

6. Choose Postopen from the Event: drop-down combo box in the
programmer pane.

136 Lotus Notes Release 4.5: A Developer’s Handbook

7. Edit the LotusScript so that it looks exactly like this:

Sub Postopen(Source As Notesuidocument)
 Dim session As New NotesSession
 If source.EditMode Then
 Call
source.FieldSetText("Creator",session.CommonUserName)
 End If
End Sub

8. Choose File - Save.

9. Enter SAMPLE1 as the form name and click OK.

10. Choose File - Close.

Running the Example
1. Select the database that you added the script to.

2. Choose Create - SAMPLE1.

The new form SAMPLE1 appears and your name is set in the creator field.

This script runs after the user opens the document. If the document is new,
the Creator field is set to the name of the creator. You can select any events
mentioned earlier and write a script. For example, you can select the
QuerySave event to check whether every field has a value entered in it or
not before the document is saved.

Chapter 6: Programming in Lotus Notes 137

Field Object
The Field object has the following events:

Initialize (when it is being loaded)

Entering (when it is entered in edit mode)

Exiting (when it is exited in edit mode)

Terminate (when it is being closed)

Example
Let’s try to add an action to a Field object and use the Exiting event.

Note You should try the following example by creating a temporary
database so as not to corrupt any existing databases.

1. Select the database and choose Create-Design-Form. The form design
window is opened and the cursor is blinking at the top left-hand side.

2. Enter TEL: at the cursor blinking position.

3. Choose Create-Field. The InfoBox used to set the properties appears.

4. Enter TEL in the Name: field of the InfoBox box.

5. Create one more field. You don’t need to change the name in the
InfoBox, you can leave it as Untitled. When we later on go to this field
we will exit from the TEL field which will cause the exiting event to
occur.

6. Choose TEL(Field) from the Define: drop-down listbox in the
programmer pane. Choose Exiting from the Event: drop-down listbox.

7. Edit the LotusScript so that it looks exactly like this:

Sub Exiting(Source As Field)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = ws.CurrentDocument
 tel = uidoc.FieldGetText("TEL")
 If tel = "" Then
 While tel = ""
 tel = Inputbox("Enter your telephone number")
 Wend
 Call uidoc.FieldSetText("TEL", tel)
 End If
End Sub

138 Lotus Notes Release 4.5: A Developer’s Handbook

Choose File - Save. You are asked to specify a form name for the
new form.

8. Enter SAMPLE2 as the form name and click on OK.

9. Choose File - Close.

Running the example
1. Select the database that you added the script to.

2. Choose Create - Sample2. The new form SAMPLE2 appears.

3. Select the second field without entering any data. A message box
appears which asks you to enter your telephone number.

This script runs when the user exits from the TEL field. The script makes
sure that the user enters a telephone number.

Button Object
The Button object has the following events:

Initialize (when it is being loaded)

Click (when it is selected)

ObjectExecute (see note below)

Terminate (when it is being closed)

Note The ObjectExecute event is primarily used in external applications
and should not be used in the Notes environment.

Chapter 6: Programming in Lotus Notes 139

Example
Let’s try to add an action to a Button object and use the Click event.

Note You should try the following example by creating a temporary
database so as not to corrupt any existing databases.

1. Select the database and choose Create - Design - Form. The form design
window is opened and the cursor is blinking at the top left-hand side.

2. Enter Character: at the cursor blinking position.

3. Choose Create - Field. The InfoBox used to set the properties appears.

4. Enter character in the Name: edit box of the InfoBox.

5. Set the cursor position just to the right side of the character field.

6. Choose Create - Hotspot - Button. A button is placed on the form, and
the InfoBox for the button appears.

140 Lotus Notes Release 4.5: A Developer’s Handbook

7. Enter Clear in the Button label: edit box in the InfoBox.

8. Choose CLEAR(Button) from the Define: drop-down combo box in the
programmer pane.

9. Choose the Script button.

10. Edit the sub so that it looks exactly like this:

Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = ws.CurrentDocument
 If (uidoc.FieldGetText("Character") <> "") Then
 Call uidoc.FieldClear("Character")
 End If
End Sub

11. Choose File - Save. You are asked to specify a form name for the new
form.

12. Enter SAMPLE3 as the form name and click on OK.

13. Click on the File - Close menu.

Running the example
1. Select the database that you added the script to.

2. Choose Create - SAMPLE3. The new form SAMPLE3 appears.

3. Enter some characters in the field, then click on the Clear button.
The characters you entered are cleared.

Chapter 6: Programming in Lotus Notes 141

Action Object
The Action object has the following events:

Initialize (when it is being loaded)

Click (when it is selected)

ObjectExecute (see note below)

Terminate (when it is being closed)

Note The ObjectExecute event is primarily used in external applications
and should not be used in the Notes environment.

Agent Object
The Agent object has the following events:

Initialize (when it is being started)

Terminate (before it is closed)

How Scripts and Formulas Are Executed
If your application contains a combination of LotusScript and the formula
language, it’s useful to know the order in which the events and formulas in
a form are executed in Notes.

The following example lists the order in which LotusScript events and
Notes formulas in a single form’s design are executed during a number of
activities. The list was generated by embedding messagebox commands or
@Prompt formulas into all the possible events and formulas on a test form
containing different field types. The form does not include all the possible
field types or evaluation combinations. By studying the results in this
example, however, you may be able to better understand the order of
execution in the forms of your own application.

The test form contains five fields from top to bottom in the following order:

Subject - Editable/Text Field - (with Default Value, Input Translation
and Input Validation Formulas)

From - Computed When Composed/ Authors Name Field - (with Value
Formula)

Counter - Computed/Number Field - (with Value Formula)

DisplayNum - Computed For Display/Number Field - (with Value
Formula)

Body - Editable/RTF Field - (with Default Value Formula)

The following tables show you different activities, such as composing a
document, and the order in which the LotusScript events and Notes
formulas are executed for each activity.

142 Lotus Notes Release 4.5: A Developer’s Handbook

Composing a Document

Object Formula or Event

Form Initialize Event

Form Window Title

Form Query Open Event

Subject Field Default Value Formula

Subject Field Initialize Event

From Field Value Formula

From Field Initialize Event

Counter Field Value Formula

Counter Field Initialize Event

DisplayNum Field Value Formula

DisplayNum Field Initialize Event

Body Field Value Formula

Body Field Initialize Event

Subject Field Entering Event

Form PostOpen Event

Saving a Document Using @Command([FileSave]) or File-Save

Object Formula or Event

Form QuerySave Event

Subject Field Input Translation Formula

Counter Field Value Formula

DisplayNum Field Value Formula

Subject Field Input Validation Formula

Closing the Window using @Command([FileCloseWindow]) or File-Close

Object Formula or Event

Form QueryClose Event

Form Terminate Event

Subject Field Terminate Event

From Field Terminate Event

Counter Field Terminate Event

DisplayNum Field Terminate Event

Subject Field Terminate Event

Chapter 6: Programming in Lotus Notes 143

Reopening the Document in Read Mode

Object Formula or Event

Form Initialize Event

Form Window Title Formula

Form Query Open Event

Subject Field Initialize Event

From Field Initialize Event

Counter Field Initialize Event

DisplayNum Field Value Formula

DisplayNum Field Initialize Event

Body Field Initialize Event

Form PostOpen Event

Toggling from Read Mode to Edit Mode with Document Open

Object Formula or Event

Form QueryModeChange Event

Subject Field Entering Event (depends on cursor)

Form PostModeChange Event

Toggling from Edit Mode to Read Mode with Document Open
(No Changes)

Object Formula or Event

Form QueryModeChange Event

Form PostModeChange Event

Toggling from Edit Mode to Read Mode with Document Open
(Saving Changes)

Object Formula or Event

Form QueryModeChange Event

Same sequence as for saving
a document

Form PostModeChange Event

Form QueryClose Event

Same sequence as for closing
a document

Same sequence as for reopening
a document in read mode

144 Lotus Notes Release 4.5: A Developer’s Handbook

Moving Cursor From One Editable Field to Another

Object Formula or Event

First field Exiting Event

Second field Entering Event

Refreshing Fields While in Edit Mode (F9)

Object Formula or Event

Subject Field Input Translation formula

Counter Field Value Formula

DisplayNum Field Value Formula

Subject Field Input Validation Formula

Form PostRecalc Event

Sequence of Events in a Complex Example
The following picture shows the sequence of events in a form which
contains a subform.

Globals
1 Initialize 17 Terminate

Form
2 Initialize 3 QueryOpen 9 PostOpen

11 QueryClose 13 Terminate

Field1
4 Initialize 8 Entering 14 Terminate

Subform
5 Initialize 6 QueryOpen

10 Postopen 12 QueryClose 15 Terminate

Field2
7 Initialize 16 Terminate

Here is the sequence of events when the document is opened:

1. Initialize of Globals

2. Initialize of Form

3. Queryopen of Form

Chapter 6: Programming in Lotus Notes 145

4. Initialize of Field1 (contained in Form)

5. Initialize of Subform

6. Queryopen of Subform

7. Initialize of Field2 (contained in Subform)

8. Entering of Field1

9. Postopen of Form

10. Postopen of Subform

This is the list of events when the document is closed:

11. Queryclose Form

12. Queryclose Subform

13. Terminate Form

14. Terminate Field1

15. Terminate Subform

16. Terminate Field2

17. Terminate Globals

LotusScript Programming Tips and Considerations

The following section will give you some help structuring your LotusScript
code for event programming within Lotus Notes.

General Suggestions
Do any or all of the following to improve your scripts:

Declare all variables in the global definitions for an object and use the
Option Public statement. Then instantiate the variables in the PostOpen
event or in a subroutine that you can call from either the QueryOpen
event (for an existing document) or the PostOpen event (for a new
document). Your variables will be easier to find and maintain, and
you’ll be able to use them in any script for the object. Also, you might
consider using Option Declare to make certain that you have declared
all the variables in your application.

For an example of declaring variables this way, see the global
definitions area in the Memo form in the Mail (Release 4) template
(mail4.ntf).

146 Lotus Notes Release 4.5: A Developer’s Handbook

Store subroutines and functions in the global definitions for a form or
navigator. Then you can use the subroutines or functions with any
object on the form or navigator. For an example, see the script for the
SaveDialog event in the global definitions for the Memo form in the
Mail (Release 4) template (mail4.ntf).

If the script for a single event approaches the limit of 64K, the script is
probably much too long for easy maintenance or understanding. Use
functions and subroutines to split the script up.

To re-use a segment of script in multiple scripts, put the segment into a
function or subroutine, or use script libraries (see section on script
libraries further on in this chapter).

Try not to nest subroutine calls or conditionals deeper than three levels.
Nesting to too many levels makes scripts hard to follow.

To debug a script that runs on a shared field, insert the field into a
temporary form so that you’ll have a place from which to run the
debugger.

In Initialize and Terminate events in forms, fields, actions, and buttons,
avoid using the uidoc variable for the NotesUIDocument class. A
document object may not be available to access (for example, a
document window may not be open) at the time the script runs.

For complete information on LotusScript, see the online Lotus Notes help
information or the Programmer’s Guide.

Use Consistent Variable Names
The Notes templates use a set of standard variable names as shown in the
table below. For example, in the Notes templates the variable note always
refers to the current back-end document.

Using these names in your own scripts makes your scripts easy to read and
understand, keeps them consistent, helps you maintain them more easily,
and may help you share them with other developers.

Consider using all lowercase for object variables and a combination of
lowercase and uppercase, for example VariableName, for other variables.

When passing values to a subroutine or function, use the same variable
names in the called routine as in the calling routine. For example, don’t call
something StatusNumber in one and StatNo in the other. Consistent
naming ensures that others can easily read and understand the script.

Chapter 6: Programming in Lotus Notes 147

Class Name Object Variable Comments

NotesSession session

NotesDatabase db

NotesView view

NotesViewColumn column

NotesDocument note Refers to the data associated with the
current document

parent The parent of the current document

child A child of the current document

profile A profile document from which you
are retrieving processing parameters

NotesItem item

NotesRichTextItem rtitem

NotesEmbeddedObject embobj

NotesDocumentCollection documents

responses Use if you are working within one
collection of responses to the current
document

children An alternative to using the variable
name responses. Use if you’re using
child as the NotesDocument object
variable.

NotesDateTime date1, date2, ... Consider using for comparing dates

NotesAcl acl

NotesAclEntry aclentry

NotesAgent agent

NotesDbDirectory dbdir

NotesLog log

NotesUiWorkSpace ws

NotesUiDocument source Already an argument to the form
events - using this name keeps your
scripts consistent

uidoc To use, set uidoc = source in PostOpen.
Then you can use this object variable in
field and action scripts in the form.

148 Lotus Notes Release 4.5: A Developer’s Handbook

Using Script Libraries
A script library is a place where you can store code segments you want to
use from other scriptable objects. You may code options, declarations, an
initialize subroutine, a terminate subroutine, and user scripts.

To write a new script, enter a statement such as Function or Sub in an
existing script. The editor automatically creates a new script and transfers
your code there.

To incorporate a script library into a scriptable object, enter a Use statement
in the (Options) script for the object or for the (Globals) object. For example,
to make the script library named SCRLIB1 available to a form’s scripts,
enter the following statement in the (Declarations) script for the form:

Use "SCRLIB1"

The name is case-insensitive and should not contain spaces. Specify the
name as a character literal or named constant:

Const lib = "SCRLIB1"
Use lib

The code in the (Options), (Declarations), Initialize, and Terminate scripts of
the library becomes available as though it were in the current object’s
corresponding scripts. User scripts in the library become available as
though they were in the current object.

Catching Errors at Compile Time
Specifying Option Declare at the beginning of your LotusScript module
forces you to declare variables explicitly. With this option in effect any
undeclared variables will be flagged during compile time. This is useful if
you design large applications and it prevents you from searching for typing
errors.

Improving Form Performance
A form that performs well is one that Notes can calculate quickly for
display, so that documents created with the form are more likely to open
quickly.

To improve form performance, do any or all of the following:

Avoid over-using hide-when formulas on forms. Each formula that
Notes must calculate when opening a form slows your application
down. Before you use a hide-when formula, try using a computed
subform or a hide-when condition such as “ide when editing”or “ide
when reading.”

Chapter 6: Programming in Lotus Notes 149

If you must use hide-when formulas to hide buttons on an action bar,
use @Command([RefreshHideFormulas]) or the LotusScript
RefreshHideFormulas method in the action formulas or scripts to force
calculation of the hide-when formulas. This closely correlates the
appearance of different buttons with users’ button clicks, and allows
each calculation to occur only when needed.

If a form has keywords fields — for example, in a layout region — and
you want formulas to calculate based on changes in those fields — for
example, hide-when formulas that progressively disclose items in the
layout region — enable the “Refresh fields on keyword change” option
instead of the “Auto refresh fields” option. Notes performs more
calculations when “Auto refresh fields” is enabled — for example, it
refreshes all formulas every time a user moves between keyword fields,
instead of just when values in keyword fields change.

Note Examine applications that were originally created in Release 3.x
and make this change where appropriate.

Remove infrequently used items from a form. For example, redesign
your application to display infrequently used items in a dialog box.

Consider limiting or eliminating entirely the use of shared fields or
subforms on any form that must open quickly.

Minimize the number of fields per form, because each field is calculated
when a document is opened, refreshed, or saved. After your design is
complete, run an agent to remove any blank, unused fields.

Consider putting field formulas into form events rather than into the
fields themselves, so you can more easily control which formulas are
calculated at each event. Don’t use hidden fields for processing events.

If your application was created in Release 3.x, it may include forms with
hidden fields containing formulas that process a document when it’s
opened or saved. To improve the performance of the application, convert
the formulas to LotusScript, and use the PostOpen and QuerySave form
events.

When to Use Formulas and LotusScript
In general, formulas are best used for working within the object that the
user is currently processing, for example, to return a default value to a field
or to determine selection criteria for a view. Scripts are best used for
accessing existing objects, for example, to change a value in one document
based on values in other documents. Scripts provide some capabilities that
formulas do not, such as the ability to manipulate a database Access
Control List (ACL). Formulas provide better performance in some
situations and may be more convenient for simple applications.

150 Lotus Notes Release 4.5: A Developer’s Handbook

When you’re ready to use both, deciding whether to use LotusScript or the
Notes formula language for a given task usually depends on the complexity
of the task. Consider these questions when making your decision:

Do you need to process a quantity of data?

A formula that “touches” many databases or documents using
@Functions must rely on the Notes user interface to access each
document, whereas LotusScript accesses the documents more
efficiently and quickly.

For example, LotusScript is a good tool for creating an agent that scans
all the databases on your workspace and returns information such as
size of database, percent used, number of documents, and so on.
LotusScript is also a good tool for running a full-text search on multiple
documents and performing an action with the results of the search.

Are you using front-end or back-end LotusScript Notes classes?

The LotusScript user interface (front-end) classes use the same Notes
code as their equivalent @Commands, so LotusScript won’t perform
better than the formula language when you use these classes. The
database (back-end) classes, however, use different code, and perform
more quickly than the equivalent @Functions.

For example, avoid using the front-end class NotesUIDocument to do
many field updates. The back-end class NotesDocument is much faster,
and allows you to assign data types (including rich text) and to add
new (hidden) fields. The front-end class allows you to update only
fields that already exist on the form, and it allows you to insert only
text in the field, as @Command([EditInsertText]) does.

In addition, the front-end classes will not work in scheduled agents run
by a server, only in agents run from a user’s workstation (for example,
from the menu).

Do you need to manipulate the currently selected object?

Use the formula language instead of LotusScript.

Do you need to program buttons on an action bar?

Consider using the formula language instead of LotusScript. Button
actions are usually simple and perform tasks usually accomplished
directly through the Notes user interface such as saving or closing a
document.

Do you need to return the default value to a field?

Use the formula language instead of LotusScript.

Do you need to return the title of a window?

Use the formula language instead of LotusScript.

Chapter 6: Programming in Lotus Notes 151

Do you need to control a workflow process from a form?

LotusScript is best for controlling workflow with form events,
especially the QuerySave event, because it can handle the more
complex tasks you may want to accomplish, such as looping, and
setting multiple variables.

For example, you can require a user to fill out fields on a form in a
pre-determined order by manipulating enter and exit field events, or
you may prevent a user from opening, saving, or editing a form until
certain conditions are met.

Are you including too many @Functions in one formula?

If a formula includes many @Functions in sequence, try changing the
formula to LotusScript. However, formulas that need only a single
@Function, such as @Command[FilePrint], are more efficient and
perform better than scripts that do the same thing.

Using the Evaluate Function to Combine LotusScript and Formulas
Use the Evaluate function in LotusScript to combine pieces of formula
language with LotusScript. This allows you to make your scripts leaner
wherever @Functions do something in fewer lines than LotusScript does.
Keep in mind that including formulas in scripts may make the scripts easier
to write, but won’t necessarily improve performance.

You can use Evaluate to include any @Functions except the ones that
directly interact with the Notes user interface, such as @Prompt,
@DialogBox, @PickList, and @Command. A couple of particularly useful
@Functions to combine with LotusScript are:

@Name, which lets you manipulate hierarchical names

@Replace, which pulls a value from a text list without requiring the
looping that LotusScript would demand

@Unique, which removes duplicates from a text list

You can also combine LotusScript and formulas in an application by using
them in different parts of the same form. For an example, see the
DocumentWorkflow subform in the Document Library (Release 4) template
(doclib4.ntf). The actions that trigger the workflow are written using
@Functions, forcing the user to save the document. But the actual workflow
and dataflow logic is in LotusScript, initiated in the QuerySave event.

Evaluate Function in LotusScript
The Evaluate function executes a LotusScript formula.

Syntax:
Evaluate(macro [, object])

152 Lotus Notes Release 4.5: A Developer’s Handbook

Elements:
macro

Mandatory. The text of the Notes macro, in the syntax that Notes
recognizes. Refer to the Notes documentation for the correct syntax of the
macro.

Note The macro text must be known at compile time, so use a constant or
string literal. Do not use a string variable.

object

Optional. (If the macro requires a Notes object)

Example:

Evaluate("@Sum(Numlist)", ...)
or
Const NotesMacro$ = "@Sum(NumList)"
Evaluate(NotesMacro$, ...)

The next example is incorrect because a string variable is used.

NotesMacro$ = "@Sum(NumList)"
Evaluate(NotesMacro$, ...)

Return value
If the macro being run returns a value, the Evaluate function returns a
Variant containing that value. Otherwise, the function does not return a
value.

Sample code
This script runs when the user exits from the Subject field and changes the
characters to propercase.

Sub Exiting (Source As Field)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim eval As Variant
 Set uidoc = ws.CurrentDocument
 Set doc = uidoc.Document
 eval = Evaluate("@ProperCase(Subject))", doc)
 Call doc.ReplaceItemValue("Subject", eval)
End Sub

In this example we use the Evaluate function to get @ProperCase carried out.
Parameters to the Evaluate function are the string containing the @Function
and the field name as well as the object that contains the field.

Tip Since in the above example the variable uidoc is only used to
get the object of the next lower class you may also write Set
doc=ws.CurrentDocument.Document to initialize variable doc.

Chapter 6: Programming in Lotus Notes 153

Making Field Value Changes Effective
There are two ways of making changes to field values in your LotusScript
programs effective.

You can use the Refresh method of the NotesDocument class. It has the
same effect as using the Refresh key on the Lotus Notes user interface.

When you modify (“ReplaceItemValue” or remove) “RemoveItem” fields in
a document in your LotusScript program, you need to use the Reload
method of the NotesDocument class to make the changes effective in the
Lotus Notes user interface. The following statements are examples to show
the Reload method.

Postopen(Source As Notesuidocument)
 note.RemoveItem("Action")
 note.RemoveItem("SaveOptions")
 note.ReplaceItemValue("Action","Approve")
 source.Reload

Note You usually describe the following statement at the initialization
stage of your program to improve performance. Remember to perform the
Reload method in your programs when you use this statement.

source.AutoReload = False

NotesDocument NotesUIDocument

NotesDatabase

Save Reload

Save

Using Validation Formulas and QuerySave
If you are using Input Translation and Input Validation formulas along with
QuerySave, be sure to do a refresh (source.Refresh) at the beginning of the
script for the QuerySave event. The reason for doing this is that the
QuerySave event occurs before Notes refreshes the document when saving.

154 Lotus Notes Release 4.5: A Developer’s Handbook

You want QuerySave to have the properly validated data to process. For
example, you don’t want QuerySave to process an empty field because a
validation formula that would have flagged the field as empty hasn’t
yet run.

Working With a Rich Text Item
The NotesRichTextItem class inherits from NotesItem class. Therefore, you
may use GetFirstItem of the NotesDocument class to access the rich text
item. Of course, you also may use methods of NotesRichTextItem, for
example GetFormattedText. However, when a rich text item is the return
value of a method such as GetFirstItem in NotesDocument, do not declare
it with a Dim statement, but leave it a variant. It cannot be declared as a
NotesRichTextItem object — a “type mismatch” error occurs. If you declare
it as a NotesItem object, you cannot use the NotesRichTextItem property
and methods — a “not a member” error occurs.

This is a piece of code to check if an item is a rich text item:

REM assume variable doc set
Set item = doc.GetFirstItem("Field1")
If item.Type <> RICHTEXT Then
 MessageBox "Field1 is not a rich text item"
End If

This button example formats a rich text item as a text string.

Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim item As Variant
 REM Do not Dim item either as NotesItem
 REM or NotesRichTextItem
 Set uidoc = ws.CurrentDocument
 Set doc = uidoc.Document
 Set item = doc.GetFirstItem("Body")
 Messagebox item.GetFormattedText(False, 40)
End Sub

Note If you are creating a new document, you must save it before you can
access a rich text field.

The shortcoming of rich text fields is that updates to such fields are not
visible to the user immediately. In order to see the rich text that has been
added, the user must first save the document, quit out of the document and
then reopen it. The following sample script shows one way to automate this
process.

Chapter 6: Programming in Lotus Notes 155

 Dim ws As New NotesUIWorkspace
 Dim s As New NotesSession
 Dim db As NotesDatabase
 Dim uidoc As NotesUIdocument
 Dim view As NotesView
 Dim doc As NotesDocument
 Dim searchdoc As String
 Dim rtitem As Variant

 Set db = s.currentdatabase
 Set uidoc = ws.currentdocument
 Set doc = uidoc.Document

 '** Create New RichTextItem in the current document
 Set rtitem = New NotesRichTextItem(doc,"RT")

 '** Create Attachment
 Call rtitem.EmbedObject (EMBED_ATTACHMENT, "", _
 "c:\embed.txt", "Att")

 '** Set the form field
 '** Save document through back-end
 doc.Form = "Add Rich Text through UI"
 Call doc.save(False,False)

 '** create unique key
 searchdoc = doc.UniversalId

 '** Refresh the main view through back-end and
 '** front-end methods
 Set view = db.getview("Main")
 Call view.Refresh
 Call ws.viewrefresh

 '** Set save options to zero so that user does not
 '** get prompted to save after closing uidoc
 doc.saveoptions = "0"
 Call uidoc.close

 '** Open database to main view
 '** Find the document again based on searchdoc
 '** Open document
 Call ws.OpenDatabase("","","Main",searchdoc,False,True)
 Set uidoc = ws.Editdocument(True)

 '** Reset doc and remove fields
 Set doc = uidoc.document
 Call doc.RemoveItem("SaveOption")

156 Lotus Notes Release 4.5: A Developer’s Handbook

The script works as follows:

1. Creates a new Rich Text field in the current document.

2. Attaches a file to this Rich Text field.

3. Sets the appropriate form field and saves the document.

4. Retrieves the unique document ID.

5. Gets a handle to the view called “main” and refreshes the view’s index
through front-end and back-end methods, so the new document will
display in the view.

6. Sets SaveOption to “ ” so the user will not be asked to save the
document, and then closes the document.

7. Using the OpenDatabase method, opens the “main” view (which is
sorted by unique document ID) and selects the appropriate document.

8. Reopens the document using the EditDocument method, and removes
the SaveOptions field. (Instead of removing SaveOptions it may also be
set to “ ”)

Prompting for User Input

Inputbox Statement
Dim num As Integer
num% = CInt(InputBox$("How many do you want?"))

The following picture shows the result of the above statements.

Chapter 6: Programming in Lotus Notes 157

Note If you need multiple input items, it is recommended to use the
Dialogbox statement rather than the Inputbox statement to avoid a large
number of input boxes for the users.

Dialogbox Statement
Some Dialogbox statements are used in the Approval Cycle template. This
statement needs a prepared form with one layout region for a dialog box.

 (Declarations) in ApprovalLogic Subform

 Dim ws As NotesUIWorkspace
 Postopen(Source As Notesuidocument) in ApprovalLogic Subform
Set ws = New NotesUIWorkspace
 GetApproverDetails in ApprovalLogic Subform
 If ws.DialogBox("(ApproverInfo)", True, True) = False Then
 Exit Sub
 End If

The following dialog box is displayed by the above statements as
implemented in the Approval Database.

(ApproverInfo), which is the first argument of the Dialogbox statement,
refers to the following layout region of the (ApproverInfo) form.

Note Once a dialog box is called, all fields defined in the dialog box are
created in the original document from which the dialog box is activated. If
the same fields in the dialog box exist in the original document, values
inputted in the dialog box are copied to corresponding fields in the original
document.

158 Lotus Notes Release 4.5: A Developer’s Handbook

Guidelines for Presenting Dialog Boxes Using Formulas
Versus Scripts

The following guidelines may help you decide which way of presenting a
dialog box is most appropriate in a particular area of your application.

How Why

@Prompt formula You want to present a simple message, or a keyword
list for selection, at a place in Notes where it’s
appropriate to use a formula, such as an action.
You want to present a message without returning the
user’s input as a value, or present a message that
returns simple input based on which buttons the
user clicks.
OK/Cancel buttons or Yes/No/Cancel buttons are
adequate button combinations.

@DialogBox formula You want to use a custom dialog box to present fields
modally, so that the user must complete the fields
before proceeding with other work. If you don’t want
to control the user’s progress in this way, present the
form itself without a dialog box.
You want to use a form, perhaps with a layout region,
to present the fields attractively. You may also want to
use progressive disclosure to reveal fields and other
objects in a certain order.

@PickList formula You want to present lists to the user and perform
actions based on the user’s selections from lists. These
lists may come from address books or views in
databases.

DialogBox method
in LotusScript

You have the same goals as the designer who uses
@DialogBox, but you prefer to work in LotusScript.
Alternatively, the place in Notes where the dialog box
will appear — for example, a form QuerySave or
PostOpen event — is more appropriately coded with
LotusScript.

MessageBox function
(returns a value) or
statement (does not return
a value) in LotusScript

You want to present some information to the user or
ask a Yes/No question, and the place in Notes where
the dialog box will appear — for example, a form
QuerySave or PostOpen event — is appropriately
coded with LotusScript.
You may also want to use some combination of
buttons other than OK/Cancel or Yes/No/Cancel.
Settings for MessageBox are available in
LSCONST.LSS which is installed in the Notes data
subdirectory.

Chapter 6: Programming in Lotus Notes 159

Error Handling

Ideally you would not need to write anything to handle run-time errors,
however, some errors may happen at run time, such as running out of disk
space or dividing by zero. A script will stop unexpectedly when such
run-time errors happen. To avoid this situation, you can write
error-handling procedures in your script.

Using On Error and Resume Statements
Using On Error and Resume statements in your script, you can handle
run-time errors that may occur. These statements are built-in functions
provided by LotusScript. The script needs the following steps to handle the
error.

1. First, trap the error using an On Error statement and specify where to
go to handle the error.

For example, if the error happens, you can go to the label ERRORPROC.

 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:

2. Second, script the error-handling process. For example, at the
ERRORPROC: label.

ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))

3. Third, complete the error-handling process using a Resume statement
to go back to the statement where the error occurred.

 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))
 Resume

160 Lotus Notes Release 4.5: A Developer’s Handbook

Creating an Error Handler for Debugging
It is useful to have an error handler to help debug your programs, as the
LotusScript debugger ends when errors occur. To prevent this from
happening, you can create an error handler like this:

On Error Goto ErrorHandler
ErrorHandler:
 Messagebox "Error:" & Error(Err), 0+64, "Error!!"
 Print "Error No. : " Err
 Print "Description : " Error(Err)
 Print "Line No. : " Erl
 Resume Next
 Exit Sub

Note If you include the constant definition file (%Include
“LSCONST.LSS”, you can use constant symbols (MB_OK,
MB_ICONINFORMATION and so on) instead of values 0 and 64 in
the Messagebox statement.

Note If you want to catch all errors in your programs, you need to write
the above error handler in all event routines you described (for example,
“initialize” “postopen” and so on), but not in the subroutines. Once you
have written an error handler in a specific event routine, it can be referred
to in the subsequent subroutines.

Using the Debugger

While you are writing scripts, you will find some errors which will require
fixing. Notes recognizes two kinds of LotusScript errors: Compile errors
and run-time errors.

Compilation of your script takes place when you save it. Compile errors are
reported and the script cannot be saved. Because Notes does not allow you
to save your script with compile errors, you have to correct all the compile
errors first.

Tip If there are compile errors in your LotusScript programs, you cannot
usually save your design. If you want to do so, you can exclude the
statements with compile errors using the %REM and %ENDREM
statements as shown in the following.

%REM
"Your program with errors"
%ENDREM

A run-time error is an error which cannot be detected during compilation.
Run-time errors are found while Notes is running the script. If your script
includes run-time errors, it will stop when the error happens, and you may

Chapter 6: Programming in Lotus Notes 161

not understand the reason why the script stopped. The script may have the
correct syntax, but, for example, division by zero is not allowed. There is a
simple example of this run-time error:

Dim x As Integer
Dim y As Integer
Dim z As Integer
x = 5
y = 0
z = x / y

During execution of the above code LotusScript will stop and issue an error
message because dividing 5 by 0 is not a valid operation.

There is one more error type, which is a logical error. You might be able to
run your script without errors, but the result is not as intended.
The Debugger helps you to detect run-time errors and logical errors.

How to Enable the Debugger
It is easy to enable debug mode. Before running your script:

1. Choose File - Tools - Debug LotusScript.

2. To check if the Debugger is enabled, choose File - Tools. If the Debugger
is on, there is a checkmark next to the menu option, as shown in the
following figure. If you click on the Debug LotusScript menu again,
debug mode is disabled.

162 Lotus Notes Release 4.5: A Developer’s Handbook

If the Debugger is enabled, when you start running any LotusScript the
debugger is launched and the script stops at the first line. The debugger is
shown as follows:

In this example, the script is in interrupt mode.

When you run a script in debug mode, the script shows one of three states:

When a script is interrupted at a breakpoint, the debugger has control.

When a script is stepping, control passes to the script and then back to
the debugger after a single statement in the script is performed.

When a script is continuing, it runs uninterrupted until a breakpoint is
reached.

While the script is in interrupt mode, you can do one of the following:

Inspect the script

Inspect the value of variables and properties

Control which is the next statement that will be performed

Inspect other defined objects, events and the scripts related to them

Chapter 6: Programming in Lotus Notes 163

You can control which is the next statement that will be performed in
interrupt mode. Click on:

Continue

To Continue until a break point is reached

Step Into

To perform the current statement and step to the next statement

Step Over

To perform the current statement and step to the next statement,
stepping over the subprogram if the current statement calls a
subprogram

Step Exit

To continue executing the current subprogram and stop in the
subprogram that called it at the line following the call

Making Breakpoints
If you find an error that is a run-time error or a logical one, inspect your
script and make breakpoints at the statement (or around it) where you
suspect the error is occurring. Then run your script. It will stop at the
breakpoint. In interrupt mode, you can inspect the value of important
variables and properties.

One-Step Execution
You can perform only the current statement. Then you can inspect the
difference of some important values of variables or properties between,
before and after performing the statement.

Instance Inspection
1. Click the Variables tab in the bottom pane. Or, choose Debug -

Variables in debug mode to access the variables window. The variables
defined for the procedure appear in a three-column display, showing
the name, data type, and value of each variable.

2. To view array or type members, click the arrow to the left of the
variable name.

164 Lotus Notes Release 4.5: A Developer’s Handbook

A Simple Example
To show you how to use the debugger, we will take the database we used
as an example for the PostOpen event.

1. Choose File - Tools - Debug LotusScript to enable debug mode.

2. Open the database and choose Create - Sample1. The following figure
shows that the debugger has been launched. The script has stopped.

The script added to the Sample1(Form) object has been launched by the
Postopen event and the execution stops at the marked sentence.

Go through the debugger.

3. Double-click the statement Call Source.FieldSetText.... in the upper pane.
This creates a breakpoint.

4. Click the Variables tab. In this pane you can see instances or variables.

Chapter 6: Programming in Lotus Notes 165

5. Click the green triangle next to Source in the bottom pane. You can see
properties of the Source instance which is of type NotesUIDocument.
This class represents the document that is currently open in the Notes
workspace.

6. You can see the variable session does not yet have values.

7. Click the Continue action button. Or, choose Debug - Continue.
The script runs and stops at the breakpoint that you made. You can see
that the session variable now has a value.

8. Click the Continue action button. The debugger closes.

This very simple example shows how easy it is to control the execution flow
of the program, and to inspect variables.

Tracing Your Programs Without a Debugger
There are some ways to trace your programs without a debugger, though
you need to add some statements in your programs for them. You can use
the PRINT and MESSAGEBOX statements to look at variables in your
programs.

Print Statement
The Print statement displays constant values and the contents of variables
on the status line at the bottom of the Notes interface.

Print "SendingNotification"

166 Lotus Notes Release 4.5: A Developer’s Handbook

This statement results in the following:

When you click the status line with the mouse, you can see the following
message list box, which contains the Print message history.

To clear the status line simply issue the Print statement with no arguments.
This clears the status line. However, you can still click on the cleared area to
display the message box.

You can also see the messages created by the Print statement by clicking the
Output button when using the Lotus Notes debugger:

Messagebox Statement
The Messagebox statement displays a dialog box with some buttons to
show messages.

%INCLUDE "LSCONST.LSS"
Dim twoLiner As String
twoLiner = |This message
is on two lines|
MessageBox twoLiner, MB_OKCANCEL, "Demo"

The following message box is displayed.

Note The vertical bar (|) is the string delimiter for multi-line strings.

Chapter 6: Programming in Lotus Notes 167

External Tools

The Notes API
The Notes API lets you write a program that processes data in Notes, or
moves data in and out of Notes. The API accesses the Notes database layer,
much as the Notes user interface itself accesses it. You can also use the API
to access the server software, the Tools menu in the workstation software,
and the File Types list in the File Export dialog box.

You can write an API program to:

Extract external data, reformat it, and store it in Notes.

For example, you can retrieve information from SQL records.

Extract Notes data, reformat it, and store it in an external application.

For example, you can retrieve Notes workflow status data into a word
processor or executive information management (EIS) system.

Add commands to the File - Tools menu.

For example, when a user chooses your new command, Notes can
launch your program and pass user context information to it, such as
which view is active, whether the user is editing a document, and
which field contains the cursor. Your program can compute new values
and enter them into Notes fields.

Implement server add-in tasks.

For example, you can implement a task that takes conditional actions
beyond Notes background macro capabilities. A server add-in task
functions as a daemon. It has no user interface and runs in the
background like other server tasks.

Create a custom file export format.

For example, when a user selects your new file type in the Notes File
Export dialog box, Notes launches your program and exports Notes
data to it.

For more information about the Notes API, see the Notes API User’s
Guide.

168 Lotus Notes Release 4.5: A Developer’s Handbook

Summary

When developing applications for Lotus Notes, you can choose the
appropriate tool for the job based on:

Skill level

Application requirements

Operating platform

You choose the programming language and APIs:

Notes Simple Actions

Notes Formulas

LotusScript

Lotus Notes C API

Lotus Notes C++ API

Interflox for OS/2 REXX

Chapter 6: Programming in Lotus Notes 169

Chapter 7
Using the LotusScript Extensions Toolkit

This chapter introduces a powerful technique to enable your Notes
applications to access and control external applications. It is based on the
open object model of the LotusScript language which you can extend by
adding new classes.

The first section provides you with an overview of LotusScript extensions.
Then, we will introduce a toolkit to you that allows you to develop your
own extensions.

You will be particularly interested in this chapter when you are highly
experienced with C++ and LotusScript.

What Is an LSX?

A LotusScript Extension (LSX) is a dynamic library of LotusScript classes
written in the C++ programming language. You can use these classes just
like any other LotusScript class in your event scripts. For example, you can
create new objects from those classes, invoke methods, and get their
properties.

LSXs provide you with a third kind of LotusScript class. The first two are
intrinsic to Lotus Notes: classes defined within LotusScript itself using the
Class statement, and classes that represent Notes objects, for example Notes
databases and documents.

The source programming language of LSXs is C++, which enables you to
use APIs of some other application. After an LSX is loaded by Notes, the
LSX registers its C++ class definitions as corresponding LotusScript classes.
This means an LSX extends the functionality of LotusScript running in
Notes, because it enables any Notes application to connect to resources and
functionality of external applications.

171

The following figure shows the extended LotusScript capabilities
introduced by LSXs:

Using an LSX

Several LSXs for access to Relational Database Management System as well
as transaction system integration are available. If none of the existing LSXs
fits your needs, you have the option to develop your own LSX. You are
supplied with a LotusScript Extension Toolkit that facilitates the mapping
of your C++ code to LotusScript classes.

You can use all the classes of an LSX in your LotusScript event scripts by
putting the USELSX statement in the “Options” event of the “Globals”
definition section of a script.

Note The USELSX statement offers you two options. You can pass the
LSX name as a library filename including the full path (USELSX
C:\MYLSX\SAMPLE.DLL), or you can use the name that is associated
with that LSX in the LSX class registry. For example, if the LSX is registered
as MYSAMPLE=C:\MYLSX\SAMPLE.DLL, the statement looks like
USELSX *MYSAMPLE. You may prefer the latter because it is much more
location independent.

As soon as you leave the “Globals” section, Notes loads and registers the
LSX. All new classes are now available for your event scripts. LotusScript
performs a type-check of all references to the new classes in your script
against the registered class definitions. Furthermore, when you select Show
browser in the programming pane to view the browser, and select
Notes:classes in the combo box, the registered LSX classes are displayed,
including their properties and methods.

If you declare an LSX twice, using the USELSX statement, LotusScript will
use the LSX library that is already loaded.

Existing
Application

API

Notes
API

LotusScript API
Operating
System

API

Native
Classes

Notes
Classes

LSX ClassesScriptable
Classes

Core Scripting Capabilities
 of Notes

172 Lotus Notes Release 4.5: A Developer’s Handbook

Finally, it should be noted that an LSX is not so tightly coupled with Notes.
It only interacts with the LotusScript interpreter embedded in Notes to
provide the functionality. For that reason, you may use an LSX in any Lotus
product that supports a LotusScript interpreter of Release 3 or higher.

Using the LSX Toolkit

This section describes the LSX Toolkit. You will understand its architecture
and how to develop a new LSX.

Overview
The LSX Toolkit is a software development environment that enables you to
implement new LSXs in the C++ programming language.

When Do You Need the LSX Toolkit?
There are certain situations that may lead you to develop your own LSXs:

Need to access external applications.

For example, an LSX may define classes to access a specific DBMS, a
document management system, or even execute some FORTRAN code.

Need to access part of an operating system.

For example, an LSX may define specialized classes to gain access to
system resources such as the window system or communication
facilities.

Need to implement an algorithm where efficiency or code-size
requirements make it undesirable to implement in LotusScript.

In this case, the LSX is not being used to script an extra application, but
as an alternative to using LotusScript itself. The LSX classes are an
alternative (or a supplement) to LotusScript native classes.

In cases where you wish to preserve Notes as a single user environment
while employing multiple applications.

Software Prerequisites
In order to develop and test an LSX with reasonable efficiency using the
Toolkit, the following software is required on your workstation:

One of the following supported development platforms:

Windows 3.X, Windows 95, Windows NT (on both the Intel and Dec
Alpha architectures), OS/2 Warp, HP-UX, Sun Solaris, AIX, Macintosh.
At the time of writing this chapter, the HP-UX and Macintosh platforms
were not available.

Chapter 7: Using the LotusScript Extensions Toolkit 173

A standard C++ development environment for the development
platform. This includes a C++ compiler, a C++ debugger, the platform’s
linker, and a Make utility.

Note For more detailed information about hardware and software
requirements, refer to the LSX Toolkit Documentation

The installed LSX Toolkit.

The application to be scripted.

Tip When this book was written, version 1.0 of the LSX Toolkit was
available, for which it was necessary to disable the compiler feature to treat
warnings as errors. Otherwise the compilation process of the LSX samples
may abort. You can do so by changing the appropriate compiler macro in
the file named LSX_MAKE.{WIN,OS2} in the SRC directory of the
distribution.

What the LSX Toolkit Contains
The LSX Toolkit includes:

C++ base class source code.

This is intended to be used in your LSX sources.

Source code for LSX examples.

There are three working examples, including one that provides a
complete LSX template for you to develop an LSX from.

LotusScript source files.

These are header files that define the LSX API for the LSX builder.

Build tools and testing tools.

174 Lotus Notes Release 4.5: A Developer’s Handbook

Included Files
The installed Toolkit has the following directory structure:

For the Intel and DEC Alpha platforms, the BIN and LIB subdirectories are
further divided into:

OS2

W16

W32

ALPHA

For UNIX platforms, they are divided into:

AIX

HPUX

SUN

X86

Each of them contains the executables and libraries for a particular
development platform (hidden in the figure). The same applies to the OBJS
subdirectories contained in each of the SRC subdirectories. They store the
compiled object modules of the sources.

LSX

BIN

INC

LIB

SRC

COMMON

LSXBENTO

LSXTW

TEMPLATE

LODLTEMP

TESTS

XINC

XLIB

Utility executables and libraries for all platforms

Header files for the LotusScript interface API

Compiled C++ libraries required for any new LSX
implementation (from sources in "SRC\COMMON")

C++ source code required for any new
LSX implementation

Sample: Interactions with Bento Container
Manager

Sample: Text window manipulation
using the native window system

Sample: Template to create new LSXs

Test scripts for sample LSXs

API header files of the applications wrapped by
 the sample LSXs

API libraries of the applications wrapped by the
sample LSXs

Sample: Automatic creation of
C++ class method definitions

Chapter 7: Using the LotusScript Extensions Toolkit 175

Note If you are developing for a single platform, only one of those
platform directories is of interest. On the other hand, if you install the
Toolkit on a network file system accessible from multiple development
platforms, this directory structure serves as a basis for cross-platform
development since you can produce different library formats out of a single
source code.

The sources in the SRC\COMMON and SRC\TEMPLATE directories form
a C++ class framework in which you can plug the classes intended to be
used from within LotusScript.

Utilities for Building and Testing
The C++ build tools comprise makefiles for all supported development
platforms as well as front end DO_IT batch-file build utilities.

Certain special LSX build tools are furnished as executable files in the
platform-specific subdirectories of \LSX\BIN:

LSXLODL, a compiler to convert class member declarations in Lotus
Object Definition Language to C++ definitions of certain tables that an
LSX uses to register with LotusScript.

LSXTEST, a GUI test frame for writing, running, and debugging
LotusScript scripts, including running LSX modules.

LSXRUN, a command-line test frame for testing LotusScript scripts,
including running LSX modules. It does not depend on any graphical
user interface.

LSXREG, for registering your LSX with the platform’s class registry.

Considering the Toolkit Design
Apart from the inherent language features of LotusScript, scripts always
require an embedding application context like Notes that provides them
with “physical” objects to work on. Therefore, the LotusScript instance
responsible for compiling and executing scripts contains an open interface
to be able to connect to an embedding application. This separation of
functionality into embedding and embedded components, and a
well-defined interface between them, forms the basis of the LSX integration.

The Extendible LotusScript Architecture
On startup, Notes creates a LotusScript instance for all further script
processing.

This instance provides certain services via a LotusScript client API which is
accessible by an API identifier, referred to as the LotusScript instance
handle. Notes gets the handle as a result of the creation.

176 Lotus Notes Release 4.5: A Developer’s Handbook

Notes as the embedding application controls the operation of LotusScript
through LotusScript’s client API. Notes presents LotusScript source or
compiled code to the LotusScript instance via this API, and LotusScript
compiles and executes them.

Crucial to the LotusScript architecture is the fact that the LotusScript client
API contains services to register new classes. Notes uses these services to
register its LotusScript Notes classes.

The implementation of each class is included in Notes’ code space: part of
the registration function serves to specify the entry points that the
LotusScript instance can call to execute the scripted behavior. This means
that Notes supplies the LotusScript instance with callback functions that
implement class constructors, methods, and property access.

The same method applies to the integration of an LSX module that is
compiled and linked as dynamic library. First, Notes loads the library and
calls a well-known function entry point in the library with the handle of the
LotusScript client API. Now, this LSX function uses that handle to register
the LSX classes, including the methods and properties that make up the
class definitions. Since the callback functions that implement the registered
functions, and the methods of the classes, are also in the LSX library, the
LotusScript instance knows how to execute the external implementation.

The following sections describe the interactions between the LSX and the
LotusScript instance embedded in Notes.

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Notes Runtime Control

Notes Objects:
Databases, Documents

Interface for
Notes Classes

LotusScript Instance

Notes Client/Server LSX Library

LSX Objects

Interface for
LSX Classes

Compile script
Run script

Access Access

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Load

AAAA
AAAA

AA
AA LotusScript Client API Interactions

Chapter 7: Using the LotusScript Extensions Toolkit 177

LSX Integration
After loading the LSX, Notes obtains the address of the LSX message
procedure. All further communication between Notes and the LSX happens
via this message procedure, defined by a standard set of messages. The two
most important messages are INITIALIZE and TERMINATE for LSX
enrollment.

Having retrieved the message procedure address in the LSX, the first
message Notes sends to the LSX is INITIALIZE, passing the LotusScript
instance handle as a parameter.

As mentioned previously, it is possible that an LSX is simultaneously used
by more than one Lotus application. For example, if the LSX is a shared
library loaded on a multi-user platform like UNIX, its code may be shared
between multiple Notes workstations, each of them embedding a
LotusScript instance. In that case, the LSX is loaded only once, but it
receives multiple INITIALIZE messages indicating the start of a session
with a new LotusScript instance. The LSX is responsible to maintain all
these sessions to be able to perform a proper cleanup for each of them when
a TERMINATE message arrives.

LSX Initialization
In the initialization phase, an LSX must register its classes with the
LotusScript instance using the passed handle.

Registering a class means supplying LotusScript with a complete class
definition that will enable processing any runtime operations on the class,
including creating and destroying class instances (objects). The
class-definition information includes the class name, class ID, version
number, parent class ID; tables to define the properties, methods, and
events of the class; and miscellaneous other information.

Since the implementation of each function or class is in the LSX’s code
space, LotusScript must call back to the LSX at runtime to create and
manipulate instances of that class. So part of registering a class is providing
a callback function for the LSX to use at runtime when LotusScript calls
back with a request to carry out operations on objects that the running
script has specified. For a given class, this function is known as the class
control procedure. It must handle the object-manipulation messages sent to
it by LotusScript, such as the CREATE message to create an object.

Once the INITIALIZE call returns, the LSX is idle except when it receives a
message it must respond to.

178 Lotus Notes Release 4.5: A Developer’s Handbook

Object Creation
When an executing script requests a new instance of an LSX class, the
LotusScript instance calls the registered class control procedure for that
class to send the CREATE message. After the new object is created, it is
added to a particular list containing all objects that were created in the
current session.

An object presents itself to the LotusScript instance via an object control
interface. LotusScript uses this interface for all further interactions with a
new object. It defines a standard set of messages for object method
invocation and property access.

Object Deletion
Deletions are handled in a similar manner. The LotusScript instance sends a
DELETE message together with an object ID to the appropriate class control
procedure which has to delete the object and update the session object list.

Runtime Manipulations on Objects
The object control interface receives messages for method invocation,
setting and getting properties, and several other messages. The interface
must map the message parameters onto the corresponding LSX class
methods and attributes to gain the intended object behavior.

Event Notifications
The LSX class method implementation may raise events to signal special
conditions to the executing script. As intended by the LotusScript language,
the script can catch them with installed event handlers. Likewise, LSX
methods can cause errors to be raised which are then handled in the
executing script. The LotusScript client API comprises appropriate
functions for that purpose.

Part of the definition for any LSX class that is registered with LotusScript
are the events raised (if there are any), and under what conditions they are
raised.

LSX Termination
Just before destroying a LotusScript instance in which the LSX is loaded,
Notes sends the TERMINATE message to the LSX message procedure. The
LSX is responsible for cleaning up any of its objects that belong to that
instance.

In order to guarantee that LSX class objects of other LotusScript instances
remain valid, only the objects of the current session’s object list may be
cleaned up.

Chapter 7: Using the LotusScript Extensions Toolkit 179

Understanding the C++ LSX Class Framework
The LSX Toolkit supplies you with a set of C++ classes and functions that
are to be used in an LSX on top of the LotusScript client interface. This code
provides higher-level services for the LSX, including class registration
utilities, and the infrastructure for handling LotusScript callbacks.

When you develop a new LSX, the Toolkit code forms a framework in the
sense that you can reuse its functionality by deriving your LSX classes from
Toolkit classes, and by extending the implementation of certain global
Toolkit functions. Therefore, you need to know where the supplied classes
and functions are located, and how they interact with each other.

Important LSX Source Files
The directory INC contains C header files for the LotusScript client API. In
the file INC\LSILSX.H, the C++ struct LSsLsxInstance defines the raw
interface through which all communication between the LSX and the
LotusScript instance occurs.

The directory SRC\COMMON contains the following files:

LSXBASE.HPP

LSXBASE.CPP

LSXCOMM.HPP

LSXCOMM.CPP

They have a central role in any LSX built using the LSX Toolkit.

Note You can use the code in this directory without any modification.

The SRC\COMMON\LSXBASE.[CH]PP files constitute an isolation layer
within the LSX. LSXBASE.HPP defines the LSXBase base class, an abstract
C++ class that every class in your LSX should inherit from. LSXBASE.CPP
implements the base class. This LSXBase class serves mainly as an interface
class; it comprises the object control interface (by which LotusScript
accesses the LSX class objects), and provides your classes with an easy
callback mechanism. Moreover, it performs some of the object protocol
messages automatically, and it contains a linked list implementation for
maintaining a hierarchy of LSX objects.

The files SRC\COMMON\LSXCOMM.[CH]PP constitute most of the
interface between the LSX and Notes and its embedded LotusScript
instance. They provide essential services for the LSX, such as an
implementation for the LSX message procedure, a generalized class control
procedure, and registration utility functions.

180 Lotus Notes Release 4.5: A Developer’s Handbook

The directory SRC\TEMPLATE contains the following files:

LSXSESS.HPP
LSXSESS.CPP
LSXSESS.TAB
OTHER.HPP
OTHER.CPP
OTHER.TAB

They form an actual application, and are intended to be used as a template
for your LSX development.

Note You will need to modify this code for your LSX.

The files SRC\TEMPLATE\LSXSESS.[CH]PP define and implement the
class LSXSession. As described previously, it is possible that an LSX is
connected to multiple LotusScript instances at a time. For each connection,
a single LSXSession object maintains information about the objects created
in it, to ensure a proper session cleanup. Moreover, the file LSXSESS.CPP
contains the (LSX specific) class registration code.

The files SRC\TEMPLATE\OTHER.[CH]PP define and implement a
sample LSX class OTHER derived from LSXBASE.

The files LSXSESS.TAB and OTHER.TAB define static tables containing the
required type information for the LSX class registration. They are
automatically generated with the build tool LSXLODL.

Flow of Control Within the Framework
Now, let’s consider how the Toolkit framework implements the interactions
with the LotusScript instance. The main LSX tasks such as initialization,
object creation, and object manipulation, are described from an
implementation point of view. You will find the LSX specific code sections
in the SRC\TEMPLATE files that you have to modify for your LSX.

After being loaded by Notes, an LSX registers its LSX message procedure
LSXMsgProc located in SRC\COMMON\LSXCOMM.CPP. Then, the
LotusScript instance calls that function with an INITIALIZE message
parameter:

COMMON\LSXCOMM.CPP

LSXRegisterOneClass ()

LSXMsgProc ()

LotusScript: UseLSX "*Template"

LSX_MSG_INITIALIZE

TEMPLATE\LSXSESS.CPP

RegisterClientClasses ()
hardwired

Chapter 7: Using the LotusScript Extensions Toolkit 181

In order to register all LSX classes, the message procedure calls the function
RegisterClientClasses. This LSX specific function knows the LSX classes,
namely LSXSession and Other, retrieves the type information from the
static tables in the .TAB files, and registers each of them with a separate call
to the function LSXRegisterOneClass. Eventually, this utility function uses
the LotusScript client API to perform the registration.

Note To register your LSX classes, you have to modify the function
RegisterClientClasses.

Part of a class registration is to provide a class control procedure which the
LotusScript instance uses to execute class operations. The Toolkit includes a
generic function LSXClassControl that can be used for all LSX classes. The
function LSXRegisterOneClass registers it as the related callback function.

This callback function is used when LotusScript encounters a New
statement for an LSX class in an executing script.

The LotusScript instance calls LSXClassControl with the message parameter
LSI_ADTMSG_CREATE and the ID of the LSX class. Because class object
creation requires LSX specific knowledge, it simply passes the call to the
function CreateClientObjects.

Now, this function decides on the given class ID what kind of object is to be
created, and calls the C++ new operator for this LSX class. As usual with
C++, the constructor of that class first calls the constructor of the base class
(which is always LSXBase). The base class constructor now registers itself
with the session object in that it is created. Furthermore, it saves the given
LotusScript handle as an object attribute so that the LSX class object can use
the LotusScript API later on. Eventually, the body of the LSX class
constructor can implement application specific object initialization as
needed.

When the new LSX class object is created, the function CreateClientObjects
returns a handle to the object control interface to the calling class control
procedure.

LotusScript: Dim X As New TEMPLATEOTHER

LSI_ADTMSG_CREATE

Other::Other()

LSXAddToOtherList(this)

COMMON\LSXCOMM.CPP

LSXClassControl ()

TEMPLATE\SESSION .CPP

Class LSXSession

CreateClientObjects ()

TEMLATE\OTHER.CPP

Class Other

COMMON\LSXBA SE.CPP

Class
LSXBase

LSXBase::LSXBase

hardwired

182 Lotus Notes Release 4.5: A Developer’s Handbook

The LotusScript instance now uses this handle to manipulate the object. In
fact, the class LSXBase comprises the object control interface, because it is
derived from it. Again, LotusScript accesses this interface by a callback
function, and the Toolkit design strategy is to use the same control
procedure for objects as for classes. This means that the LotusScript
instance finally calls the function LSXClassControl to perform object
manipulations, passing the message together with a class ID, an object
handle, and a set of parameters.

Let us now consider an example: a method invocation on a given object.

Receiving an LSI_ADTMSG_METHOD message, the LSXClassControl
function first converts the given object handle into an LSXBase object. Then,
it calls the method LSXDispatchMethod on that object which is defined as
pure virtual function in LSXBase. Therefore, it actually calls the function
defined in the derived class Other. Now, this function determines which
method invocation is requested (by looking at the method ID), calls it, and
passes the return value back to the caller.

As you can see, method invocation on objects is a very straightforward
implementation. It takes advantage of the class LSXBase which is designed
as an interface class. Other runtime manipulations occur in the same
manner. For example, a script statement to access an Other object property
is sent as a LSI_ADTMSG_PROP_GET message to the function
LSXClassControl which calls the method LSXGetProp on the LSXBase
object. Again, the function is declared as virtual, and the object is actually of
class Other, so that the function LSXGetProp in the Other class is called.
Finally, this function is provided with the property ID, and can take the
appropriate action.

LotusScript: Call X.Other

LSI_ADTMSG_METHOD

X->LSXDispatchMethod

COMMON\LSXCOMM.CPP

LSXClassControl ()

TEMLATE\OTHER.CPP

Class Other

COMMON\LSXBA SE.CPP

Class
LSXBase

X->LSXDispatchMethod

Virtual function call

LSXOtherMethod

Chapter 7: Using the LotusScript Extensions Toolkit 183

Other interactions between the LotusScript instance and the LSX, such as
object deletion and LSX termination, are almost done automatically. The
implementation of the LSXSession class ensures a proper cleanup per
session, and calls the destructor of any other LSX class objects as needed.

LSX Design Decisions
In the following, find some general design decisions to be considered for all
LSX implementations.

LSX Class Design
You need to consider what kinds of data structures to use to represent the
object attributes in your class model.

Besides scalar types such as INTEGER, LONG, SINGLE, DOUBLE,
CURRENCY, STRING, or VARIANT, LotusScript supports arrays and lists.
Beyond it, you can use any of the classes you define in the LSX. All of these
data structures are available for declaring and using as data members of
your LSX classes. The same holds for the parameters and return value types
of the class methods.

Note This implies that you cannot directly interface to the Notes product
classes such as NotesDocument. You have to break them down to the types
LotusScript supports.

A further way to structure an LSX class is to define and register it as a
collection class. A collection class is a container of items that can be
accessed directly via indexing or via the LotusScript ForAll language
iteration construct. The allowable language constructs are to access the
values, the properties, and the methods of an individual item, or of every
item in the collection.

Object Control Interface
LotusScript follows the conventions of a COM (Common Object Model)
interface in accessing client objects. It is the object control interface, a C++
structure named ILsiADTControl.

Either the ILsiADTControl structure may be contained as a member in the
definition of each class, or the base class LSXBase may inherit from it. The
usual design strategy, and the default in the Toolkit examples, is
inheritance.

In future releases, it is planned to include an OLE adapter in the Toolkit
enabling you to expose objects in any of your LSX classes to OLE
automation. This technique will require the ILsiADTControl to be inherited.
For now we recommend using the default, letting the LSXBase class inherit
from ILsiADTControl.

184 Lotus Notes Release 4.5: A Developer’s Handbook

In the Toolkit, the high-level flag variable EMBED_ADT governs the choice.
It is referenced when building object files for the example LSXs, using the
makefiles which are included. By default, the EMBED_ADT flag is
undefined, so that the example LSXs compile with ILsiADTControl
inherited.

Character Sets
Another design decision is what character set to use to represent
LSX-maintained strings that must be passed to the LotusScript instance.

The LotusScript internal representation is UNICODE. However, an LSX or
an embedding application can specify any of four string communication
representations to LotusScript:

The platform-native character set (currently ANSI)

UNICODE

LMBCS

ASCII

This means that a string will be presented to LotusScript in that
representation. LotusScript is responsible for converting the string to
UNICODE as needed for its own purposes.

Caution LotusScript will translate string message parameters passed to
the LSX into the representation specified during the class registration.
The current implementation of the utility function LSXRegisterOneClass
specifies the platform-native character set which is sufficient for many but
not all applications.

An LSX cannot specify that every string passed between it and LotusScript
uses one of the four representations. Rather, the LSX has to specify which
representation to use for each string individually.

Portability Issues
You need to decide early on whether your LSX is to be written for one
platform or several. Single-platform design allows you to write C++ source
code to take advantage of specific compiler features and system services.
However, the resulting source code may not be portable.

In the LSX Toolkit, the provided C++ framework code is platform-
independent concerning compiler features and system services. A
platform-specific header file is selected and included in those files. The
selection criterion differentiates the platforms 16-bit Windows, 32-bit
Windows, OS/2, UNIX, and Macintosh.

The LotusScript instance offers you standard systems services: memory
management, file management, national language string support,
interprocess communication, dynamic library system, and others. Your LSX

Chapter 7: Using the LotusScript Extensions Toolkit 185

implementation should access these system services only through the
provided LotusScript interface.

Caution The Toolkit overrides the default C++ new operators to use
LotusScript’s memory management services.

Graphical User Interface
As a separately loaded library, you can develop the LSX to present its own
user interface. However, any such interface that you may choose to
implement is independent of Notes, and you cannot build interactions
between them. In particular, an LSX running on a server cannot invoke it.

Globally Unique IDs for LSX Classes
The client object interface is standardized as an OLE2/COM-style interface.
This ensures that client objects are accessed consistently across LotusScript
applications.

So, for each class in your LSX, you have to assign a globally unique ID
(GUID) to identify your class with LotusScript. LotusScript will not allow
an LSX to register a class that has the same GUID as an already-registered
class.

A GUID is a 16-byte globally unique identifier. In Windows, a GUID is the
same as a Windows GUID used for OLE objects. Some compilers on
Windows platforms include a tool to create GUIDs. For detailed
information, refer to the LSX Toolkit Documentation.

Creating an LSX

This section describes how to create a new LSX.

Currently, setting up the environment for a new LSX is a task where you
have to create several files for the new LSX classes. Beyond that, you have
to make some changes in the files that comprise the Toolkit, namely
LSXSESSION.HPP and LSXSESSION.CPP.

Note This means the first thing you want to do before starting to
implement an LSX, is to copy the sources from SRC\TEMPLATE to a new
source directory SRC\NEWLSX for your LSX. Then, change the SUBSYS
entry in the MAKEFILE.MAK and the Library entry in TEMPL_[NW].DEF
to your LSX name. On Windows, the files LINKRESP.W32 (for 32-bit) and
OBJSRESP.* (for 16-bit) must contain the appropriate directory.

Caution Also, be sure to change every occurrence of “Template” to the
name of the LSX. It is very important that propercase be maintained where
applicable. For example: “Template” to “Newlsxname” and “TEMPLATE”
to “Newlsxname.”

186 Lotus Notes Release 4.5: A Developer’s Handbook

Follow these steps to set up a new LSX class:

1. For each new LSX class, define the properties, methods, and events it
shall have. These definitions are contained in several tables (C++
structure arrays) and constants, stored in a .TAB file. To define them,
you can either directly start with a copy of the OTHER.TAB file and
modify it, or you first define them in the Lotus Object Definition
Language, and use LSXLODL to compile them into those tables. Then,
create an .HPP file for the class definition, and use the file OTHER.HPP
as an example of how to structure it. The same applies to the .CPP
file you create for your class. At least, your class must contain a
constructor, a dispatch method, and two more methods to get and set
properties.

2. Next, modify the files for the LSXSession class (in the new directory).
Apart from some changes to constants and tables for GUIDs and
names, you must add another list to maintain all objects of the new
class as well as methods to add and delete items in it. Furthermore,
update the registration function to register the new class, and extend
the constructor and destructor to set up the new list member properly.

3. Then, update the file TEXTSTR.HPP to assign IDs to the methods,
properties, and events. In the file GUIDFILE.HPP, define a GUID for
your class. You can always use the existing code as a guideline. It
contains comments that suggest where to put the new code.

4. Finally, make the appropriate changes to the makefile in order to
compile your LSX. If you are developing on a Windows 3.X platform,
you also have to add the path of the new LSX object to be created.

Tip If you don’t want to implement all the functions at once,
you can still build the LSX and use it in your scripts. For all
the functions not implemented yet, simply return the value
LSI_RTE_SubOrFunctionNotDefined from within the class method
LSXDispatchMethod so that LotusScript will notice it.

An Example
Here is an example of how to add a method NewMethod to the class Other
which has no return value and a single INTEGER argument. Start by setting
up a new LSX source directory as described, and do the following:

1. Changes in OTHER.TAB:
Extend the method ID table:
static LSUINT other_methodnameids[N_OTHER_METHODS] =
{
 CMYLSX_OTHERMETH_NEW,
 CMYLSX_OTHERMETH_CLOSE,
 CMYLSX_OTHERMETH_OTHER,
 CMYLSX_OTHERMETH_PASSOBJ,
 CMYLSX_OTHERMETH_NEWMETHOD, // the new entry!
};

Chapter 7: Using the LotusScript Extensions Toolkit 187

Create the list of arguments that this method will be receiving:
static LSDATATYPE
NewMethodArgs[N_NEWMETHOD_METHOD_ARGS+1] =
{
 LSX_BYREF_VOID, // return type
 LSX_THIS_PTR, // ptr to created instance
 LSX_BYVAL_SHORT // the INTEGER argument
};

Create a method description used at registration time:
static LSADTMETHODDESCR
other_gmethods[N_OTHER_METHODS] =
{
 //... all previous entries
 { (LSPLTSTR)LSNULL, CTEMPLATE_OTHERMETH_NEWMETHOD,
 NewMethodArgs,
 (LSREGNAME*)LSNULL,N_NEWMETHOD_METHOD_ARGS,
 LSX_REGULAR_PROC,LSI_NO_HELPID, 0 },
};

2. Changes in OTHER.HPP:
Change the number of methods:
#define N_OTHER_METHODS 5

Add the definition for the number of method arguments:
#define N_NEWMETHOD_METHOD_ARGS 2 // 1 + this

Add the method to the class declaration:
class Other : public LSXBase
{
 public:
 //...
 void NewMethod (PLSADTMSGMETHOD args);
 //...
};

3. Changes in OTHER.CPP:
Extend the dispatcher method:
LSSTATUS Other:: LSXDispatchMethod (PLSADTMSGMETHOD args)
{
 //...
 switch (args->idMeth)
 {
 //...
 case CTEMPLATE_OTHERMETH_NEWMETHOD :
 this->NewMethod (args);
 break;
 default:
 //...
}

188 Lotus Notes Release 4.5: A Developer’s Handbook

Define the new method: (it will be more useful later in this chapter)

void Other:: NewMethod (PLSADTMSGMETHOD args)
{}

4. Changes to LSXSESS.CPP:

Update the LSX name table:

static TEXTTABLE gTemplateNames[] =
{ //...
 {CTEMPLATE_OTHERMETH_PASSOBJ, "PassObject"},
 {CTEMPLATE_OTHERMETH_NEWMETHOD, "NewMethod"},
 //...

Note The table entries occur in the following order: first class names;
then the properties, methods, and events for the first class; then for the
second; and so on.

5. Changes to TEXTSTR.HPP:

Define the ID for the new method:

//...
#define CTEMPLATE_OTHERMETH_OTHER (LSXBASE_NAMES+482)
#define CTEMPLATE_OTHERMETH_PASSOBJ (LSXBASE_NAMES+483)
#define CTEMPLATE_OTHERMETH_NEWMETHOD(LSXBASE_NAMES+484)
//...

Assuming that you have set up all the files for a new LSX, you may want to
add the specific application logic. The next sections explain how to use
LotusScript data types, variables and method arguments of these types, and
the system services offered by the LotusScript instance.

Using LSX Data Types
The LSX interface headers define macros for common C++ data types to
compensate platform differences. You are encouraged to use them instead
of the intrinsic C++ language types, because they are widely used
throughout the Toolkit source code, and you should be familiar with them.

Data Type Macro Meaning

LSVALUE Any of the following data type macros but the unsigned
versions; actually a union of all of them plus a member Type
that tells you the type of the value. (See the section on Data
Type Descriptions below)

LSSBYTE Same as signed char

LSUBYTE Same as unsigned char

LSSSHORT Same as INTEGER in LotusScript and signed short int in C++

continued

Chapter 7: Using the LotusScript Extensions Toolkit 189

Data Type Macro Meaning

LSUSHORT Same as unsigned short int

LSSINT Same as signed int

LSUINT Same as unsigned int

LSSLONG Same as LONG in LotusScript and signed long in C++

LSULONG Same as unsigned long

LSFLOAT4 Same as float

LSFLOAT8 Same as double

LSBOOL Allowed values: LSTRUE, LSFALSE

LSPVOID Pointer to void (null pointer is LSNULL)

LSPBYTE Pointer to (unsigned) character arry

LSPTR (x) Pointer to x

LSSTATUS Same as LSSSHORT; used for return status values

Some more type macros are defined for string data types:

Data Type Macro Meaning

LSCHAR Same as char

LSPLTCHAR Same as LSCHAR

LSCLICHAR Same as LSCHAR

LSUNICHAR Same as LSUSHORT

LSSTRING Unicode string; pointer to LSUNICHAR

LSCLISTR ANSI strng; pointer to LSCLICHAR

LSPLTSTR Platform-native string; pointer to LSPLTCHAR

LSUNISTR Unicode string; pointer to LSUNICHAR

190 Lotus Notes Release 4.5: A Developer’s Handbook

Finally, the remaining data structures defined in LotusScript are
represented by the following C++ type definitions:

C++ Data Type
Definition

Meaning

LSsDate Variant of data type 7 (as returned by the LotusScript
function “Date”); same as LSFLOAT8: For an explanation,
refer to the LotusScript Language Reference Manual

struct LSsCurrency {
 unsigned long Lo;
 long Hi;
}

Currency data type in LotusScript

PLSVALUE A variant; same as LSPTR (LSVALUE)

Using Data Type Descriptions
As you may have already noticed, the argument passing to LSX class
methods is different from the way C++ passes arguments. Instead, an LSX
class method receives a packed array structure as a single argument
containing the actual parameters of the method. Each of the array members
stands for one parameter, and includes information about the data type and
the value.

So, the data type information itself is coded using certain symbolic integer
constants. The basic ones are as follows:

LotusScript Data
Type Code

Related Data Type

LSVT_EMPTY EMPTY value for variants

LSVT_NULL NULL value for variants

LSVT_SHORT LSSSHORT (Integer data type in LotusScript)

LSVT_LONG LSSLONG (Long data type in LotusScript)

LSVT_SINGLE LSFLOAT4

LSVT_DOUBLE LSFLOAT8

LSVT_CURRENCY LSsCurrency

LSVT_DATE LSsDate

continued

Chapter 7: Using the LotusScript Extensions Toolkit 191

LotusScript Data
Type Code

Related Data Type

LSVT_STRING Depends on the specified character translation! Either a
LSSTRING for UNICODE, or LSPBYTE for LMBCS, or
LSPLTSTR for ANSI

LSVT_BOOLEAN boolean

LSVT_VARIANT PLSVALUE

LSVT_UNISTR LSsValueUniStr; same as LSPTR (LSUSHORT)

Furthermore, there are constants for list and array type descriptions. Refer
to the file INC\LSIVAL.HPP and the LSX Toolkit Documentation for details.

Accessing LSX Class Method Arguments
LSX class method arguments are packed in a single array which is passed to
your method implementation. So, any of your methods will look like this:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)

The type PLSADTMSGMETHOD, defined in INC\LSILSX.HPP, is a pointer
to the following structure:

struct LSFAR LSADTMSGMETHOD
{
 PLSVALUE pArg; // Array of Arguments.
 LSUSHORT nArg; // Number of
Arguments.
 LSADTMETHODID idMeth; // Method ID.
 LSADTCLASSID idClass; // class ID for method.
};

typedef LSPTR (LSADTMSGMETHOD) PLSADTMSGMETHOD;

The idClass and idMeth members inform you about the class ID and the
method ID, respectively. The nArg member tells you the size of the pArg
which is actually an array. So, pArg has members from index 0 to nArg - 1.
The size depends on whether the method returns a value or not. If it does
not, nArg equals the N_NEWMETHOD_NEWCLASS_ARGS -1, where
N_NEWMETHOD_NEWCLASS_ARGS +1 is the number of method
arguments you specified in the NewClass.TAB file. If the method does
return a value, nArg is equal to this constant.

So, basically you access the message parameters by accessing the pArg
member. It is an array whose members can be of any type, as defined by the
type LSVALUE. But LSVALUE provides you with information about the
type of value, and therefore you should always access a method parameter
in the following way:

192 Lotus Notes Release 4.5: A Developer’s Handbook

// this method doesn't return a value, so it's first
// parameter is at index 0
void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 PLSVALUE pVal = LSNULL;
 // check that the number of passed parameters equals
 // the expected number (means: the declared number of
 // arguments). The constant N_NEWMETHOD_NEWCLASS_ARGS
 // should be defined in NewClass.HPP
 assert (args->nArg == N_NEWMETHOD_NEWCLASS_ARGS - 1);
 //...

 // access the n-th parameter which should be of type
 // INTEGER, for example.
 pVal = &args->pArg[n - 1];
 assert(pVal->Type == LSVT_SHORT);

 // now, it is safe to access the value of the parameter
 LSSHORT nthParm = pVal->vShort;
}

Note To apply this method to a class constructor, simply consider it as a
method with no return value. So, the first argument starts at index 0.

In this example, the method parameter is accessed by the expression
pVal->vShort. In general, to access any of the types whose descriptions are
listed in the previous table, the following definition of the data type
LSVALUE applies:

struct LSsValue
{
 union
 {
 LSSSHORT vShort; // LSVT_SHORT
 LSSLONG vLong; // LSVT_LONG
 LSFLOAT4 vSingle; // LSVT_SINGLE
 LSFLOAT8 vDouble; // LSVT_DOUBLE
 //...
 LSsCurrency vCurrency; // LSVT_CURRENCY
 LSsDate vDate; // LSVT_DATE
 LSSTRING vString; // LSVT_STRING
 //...
 LSsValueBool vBool; // LSVT_BOOLEAN
 PLSVALUE vVar; // LSVT_VARIANT
 //...
 LSsValueUniStr vUniStr; // LSVT_UNISTR
 // —- Convenience Values for callbacks
 // when translation is specified

Chapter 7: Using the LotusScript Extensions Toolkit 193

 LSPBYTE vLmbcs; // LSVT_STRING
 // (translated)
 LSPLTSTR vChars; // LSVT_STRING
 // (translated)
 LSPBYTE vBytes; // LSVT_STRING
 // (translated)

 //...
 }; // end of union
 LSVALTYPE Type; // Value Type
 //...
};

Furthermore, there are members for the types such as lists and arrays. Refer
to the file INC\LSIVAL.HPP and the LSX Toolkit Documentation for details.

LSX Error Values
The data type LSSTATUS is frequently used as a return type, to either
return LSX_OK, or any of the error constants defined in the file
INC\LSIERR.HPP.

Accessing LSX Class Property Arguments
For each class with properties exported to LotusScript, you will set up two
class methods NewClass::LSXGetProp and NewClass::LSXSetProp. For the
latter, the question arises how to access the new value that the property
should get.

The declaration is as follows:

LSSTATUS NewClass:: LSXSetProp(PLSADTINSTDESC pInstDesc,
 PLSADTMSGPROP param)

The first argument, pInstDesc, is a pointer to a structure describing the
called object in terms of object control interface, related class ID, and
current LotusScript instance.

The second argument is more important since it names the property to be
changed, and the new value. It points to the following structure:

struct LSADTMSGPROP
{
 PLSVALUE valProp; // Property Value.
 LSADTPROPID idProp; // Property Id.
 LSADTCLASSID idClass; // Class ID for this property.
};

The member idProp stores the ID of the property to be changed, as you
registered it in the .TAB file. The valProp member contains the new value of
the property. You use this structure as follows:

194 Lotus Notes Release 4.5: A Developer’s Handbook

LSSTATUS NewClass:: LSXSetProp(PLSADTINSTDESC pInstDesc,
 PLSADTMSGPROP param)
{
 LSSTATUS stat = LSX_OK;
 PLSVALUE pVal = param->valProp;
 LSSSHORT len;

 switch (param->idProp)
 {
 case CTEMPLATE_NEWCLASSPROP_PROPERTY:
 // access property (assuming it's a
 // LotusScript integer)
 len = pVal->vShort;
 //...
 default:
 assert (LSFALSE);
 }
 return stat;
}

Using LotusScript System Services
The LotusScript client API offers you several system services. You are
encouraged to use them rather than directly accessing the operating system
API. This helps you to write LSXs which can be ported to other platforms
more easily.

The following paragraphs give you an overview of some of the
services. For a detailed description, refer to the files contained in the
directory INC\SYS. For example, the file management service is
declared in the file LSSFMGR.HPP; the actual service is enclosed in
SERVICE_DECL_BEGIN(FILEMGR) and SERVICE_DECL_END. It
consists of a set of functions you may call in any of your class methods.

For any but the memory management system service, you have to prepare
your class to use the service.

Preparational Steps
1. First, extend your LSX class slightly by adding a new private member:

class NewClass : public LSXBase
{
 //...
 private:
 //...
 PLSSFILEMGR pFM; // system services file manager
 //...
};

The member type is taken from the file INC\SYS\LSSFMGR.HPP.

Chapter 7: Using the LotusScript Extensions Toolkit 195

2. Then, extend the class constructor to initialize it:

NewClass:: NewClass (LSPTR(LSXSession) s,
 PLSADTMSGCREATE args)
 : //... initialization of base and class members
{
 LShINSTANCE hLSInstance; // LS instance handle for
 // this class object

 // get the instance
 hLSInstance=s->LSXGetInstance();

 // get the file manager service handle
 this->pFM = hLSInstance->Services->pFMGR;
 //...
}

You will find a complete list of available system service handles in the
file INC\LSSRVMGR.HPP. They are defined as members of the
structure LSSsAnchor.

3. Now, your class is ready to access the service in its methods:

void NewClass:: NewMethod (PLSADTMSGMETHOD args)
{
 assert (this->pFM); // check that the file service
 // is available

 //...
 this->pFM->"any FM service function"
}

Memory Management Service
The API provides function calls for allocating and releasing heap memory.
When the LSX uses this service, the LotusScript instance gains complete
control over the dynamically allocated memory.

In order to make use of C++’s ability to redefine the new operator, the file
SRC\LSXCOMM.CPP defines a special version of operator new, operator
new [], and a corresponding delete operator that perform calls to the API’s
memory service functions. This means that you don’t have to know the API
memory functions; you will use them implicitly by these C++ operators.

In contrast to the ordinary new operator, the versions defined for LSXs get
a so-called placement argument, a handle to the LotusScript client API. The
following code fragment shows you how to use them:

196 Lotus Notes Release 4.5: A Developer’s Handbook

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 LSPTR (LSSSHORT) *aNewInt;
 LSPLTSTR *aNewString

 // create a new integer (always pass this->LsiInst)
 aNewInt = new (this->LsiInst) LSSSHORT;
 // create a new string of length 42 (incl. trailing 0)
 aNewString = new (this->LsiInst) LSPLTCHAR [42];
 //...
 // do something
 //...
 delete aNewInt;
 delete aNewString;
}

File Management Service
The LotusScript client API offers you a rich set of file management
functions:

Functions for file access: Open, PathOpen, Close

Functions to work on file contents: Read, Write, Seek

Functions for file attributes: GetAttr, SetAttr, DateTime, FileSize

Directory functions: ChDir, CurDir, MkDir, RmDir, DirFirst, DirNext

and more...

The following code gives you an example how to use these service API
functions:

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 // Purpose: Open a file, append a text string, and close
it

 // set the open flags: lock and access type
 LSUSHORT LSOpenMode = (LASFM_SHARE_EXCLUSIVE |
 LASFM_ACCESS_WRITE);
 lfile hFile; // a file handle

 // try to open the file; it fails when it doesn't exist
 hFile = pFM->Open ("\\lsx\\newmthd.txt", LSOpenMode);

 if (hFile < 0) // it has to be created
 hFile = pFM->Open ("\\lsx\\newmthd.txt",
 LSOpenMode | LASFM_ACCESS_CREATE);

 // seek to the end of the file
 if (pFM->Seek (hFile, 0, LASFM_SEEK_EOF) == LASFM_ERROR)

Chapter 7: Using the LotusScript Extensions Toolkit 197

 {
 // perform error handling!
 }

 LSUSHORT charsWritten;

 // now write the text string...
 charsWritten = pFM->Write (hFile,
 "A text string", 13);
 // ...and append a newline
 charsWritten += pFM->Write (hFile,
 LASFM_EOL, LASFM_EOL_LEN);
 // check that all characters are written
 if (charsWritten != 13 + LASFM_EOL_LEN)
 {
 // perform error handling!
 }

 // close the file
 pFM->Close (hFile);
}

Interprocess Services
This service is defined in the file INC\LSSIPC.HPP. It offers some functions
you may already be familiar with from script programming in Lotus Notes.

SendKeys

SendKeysCancel

Shell

AppActivate

Platform Services
The platform service definition gives you access to some system values and
functions, for example:

GetDate/SetDate for handling the system date

GetTime/SetTime for handling the system time

Environment to retrieve system environment variables

MsgBox to display texts in a message box

The following example demonstrates the usage of the MsgBox function. Of
course, the class must be prepared to access the platform service anchor:

198 Lotus Notes Release 4.5: A Developer’s Handbook

void NewClass:: NewMethod(PLSADTMSGMETHOD args)
{
 // Purpose: Display a text in a message box.

 // The box shall consist of an information icon
 // and Yes and No buttons
 LSUSHORT button;

 button = pPLAT->MsgBox ("Do you want to see more?",
 4 + 64, // same as MessageBox !
 "Please decide");
 switch (button)
 {
 case 6: // YES
 //...
 case 7: // NO (same return codes as for MessageBox)
 //...
 }
}

Testing an LSX
During development, to test your new LSX you can either write event
scripts in a Notes database that use the classes, or you can use a test tool
shipped with the LSX Toolkit.

Because LSX testing isn’t concerned with any of the Notes functionality, it is
much more convenient to use the Toolkit test tools.

The LSXTEST Tool
In general, LSXTEST presents an integrated development environment to
write, compile, execute, and debug LotusScript programs.

In particular, it helps you to write and debug LSX test scripts that contain a
USELSX statement to load the LSX.

For example, LSXTEST allows you to:

Open, edit, and save LotusScript .LSS files.

Compile scripts and save the compiled LotusScript modules.

Load compiled modules.

Set breakpoints to interrupt script execution.

View the values of variables and the stack frame for the current
breakpoint during execution.

Chapter 7: Using the LotusScript Extensions Toolkit 199

Many of the features are also available as command line options passed to
LSXTEST. Hereby, you can automate most of the test steps.

Let’s Look at an Example
The Toolkit contains test scripts for all sample LSXs. To load and run one of
them in LSXTEST:

1. Start an LSX development session with a command prompt window.

2. Start LSXTEST. Actually, the command name is different for each
platform. For example, in OS/2, it’s LSXTESTO.

3. Choose File - Open. The file dialog box is displayed.

4. Select one of the test scripts in the directory TESTS, for example
TW.LSS. The script is displayed in a new window.

Note This sequence of steps is also accomplished by invoking
LSXTEST with the script filename.

5. Click the Play button to run the script. It uses the Textwindow sample
LSX to display a new window.

Note Remember to first compile the LSX in the directory
SRC\LSXTW.

The following figure shows the result:

200 Lotus Notes Release 4.5: A Developer’s Handbook

The LSXRUN Tool
LSXRUN provides a minimal runtime environment for testing scripts. It is
invoked by a command line, and does not require or depend on any
graphic user interface.

LSXRUN runs LotusScript source files, and outputs a report of its activities
to the screen and an optional log file. For further details, refer to the Toolkit
Documentation.

Deploying an LSX

The LSX Runtime Environment
The runtime environment of an LSX consists of the following:

Lotus Notes Release 4. Actually, it can be any Lotus product that
supports the LotusScript interpreter (Release 3.0 or higher).

The LSX itself.

The scripted application: the application for which the LSX provides an
object model.

You must be aware of the location where the LSX will eventually execute. If
you define an agent that runs on a server, and it uses the LSX, the location
of the LSX is the Notes server. There are other types of agents, for example
“Manually from Actions Menu,” that will run on the Notes Workstation. If
these agents use an LSX, its location is the Workstation.

So, the LSX and the scripted application must be available at the location
where they are used.

LSX Installation
To distribute your LSX, you may want to write an installation program that
copies the LSX (and probably the scripted application) to the desired
directory, and performs some necessary initialization tasks such as setting
up environment variables.

The common method to write an installation program is a batch command
file. As your LSX is intended to run on multiple platforms (ideally on all
Notes platforms), the installation program should consider the operating
system used for installation. This allows the installation to behave
differently for different platforms. Look at the Toolkit installation program
for examples of how to differentiate between operating systems.

Chapter 7: Using the LotusScript Extensions Toolkit 201

LSX Registration
The registration of the LSX classes influences the method used for accessing
them from within LotusScript. Either the script loads it by passing a
complete path to the UseLSX statement, or it just references a name in the
LSX class registry.

If you choose the first option, your installation program must copy the LSX
library to the location referenced by the scripts. In fact, it is very difficult to
find pathnames for libraries that consider multiple operating systems, the
different directory structures and drive names, and filename restrictions.

Therefore, the class registry is the recommended place to store a complete
path of the LSX library, together with a symbolic name, the key, that you
then use in the UseLSX statements in your scripts. The key uniquely
identifies your LSX on the system. Using this option, LotusScript will look
up the path in the LSX class registry.

Be aware that you cannot redistribute Lotus’ registration program LSXREG
to call it from the installation program. Instead, you have to write your own
registration procedure for your classes.

On Windows 3.X, the registry is stored in a LotusScript Extension section in
the .INI file. On Windows 95 and Windows NT, the information is stored in
the folder HKEY_LOCAL_MACHINE\SOFTWARE\Lotus\Components\
LotusScriptExtensions\2.0. On all other platforms, the file NOTES.INI is
used as class registry.

202 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 8
Using Agents

About Agents

Agents allow you to automate many tasks within Notes. They operate in
the background to perform routine tasks automatically for the user, for
example filing documents, sending mail, looking for particular topics,
archiving older documents, or perform more powerful functions, such as
manipulating field values and bringing data in from other applications.

Agents can either be private agents created by the user and used only
by the user, or shared agents created by a designer and used by anybody
who has access to the application or database. Both private and shared
agents are design elements that are stored with the database for which they
are created. They can be run manually by the user, automatically when
certain events occur such as mail arriving, or scheduled to run at certain
intervals. They can contain Notes simple actions, @Function formulas, or a
LotusScript program.

Access Control

In the Access Control List (ACL) for the database, there is an option Create
personal agents. Since personal agents on server databases take up server
disk space and processing time, the database owner may deselect this
option to prevent some users from creating personal agents.

In order to create a personal agent, you must have this option selected.

In order to create a shared agent, you require at least designer authority.

Note A Notes administrator can use the Agent Manager Restrictions
section of a server document to prevent people from running personal
agents on a server; people denied this server access cannot create personal
agents on the server, regardless of the ACL setting.

203

Creating an Agent
There are several ways of creating an agent.

1. To view existing agents, open the database.
2. Click on Agents within the navigation pane.
3. Double-click on one of the agents displayed on the right-hand side to

open it.

4. Or, click on the Database icon.
5. Choose Create - Agent...

Or, copy and paste from another database. To do this, open the agents
pane in the database you want to copy from.

204 Lotus Notes Release 4.5: A Developer’s Handbook

6. Select the agent you want to copy, and copy it to the clipboard.

7. Go to the agents pane in the database you want to copy to.

8. Paste the agent in from the clipboard.

9. Double-click on the agent to work with it.

Setting Up the Agent
Whichever method you use, the following Agent Builder window is
displayed:

Naming the Agent
The first thing to do is to give the agent a name. A descriptive name is
especially important for an agent that you are designing for users to select
from the Action menu. Also try to keep the first character unique. This is
because, as with forms and views, Notes will use the first unique character
as an accelerator key under OS/2, Windows, and UNIX (Macintosh does
not use accelerator keys).

Also, click Shared Agent if you want this agent to be used by other users.

Caution Once you have saved an agent you cannot change a shared agent
to a private agent or vice versa.

Chapter 8: Using Agents 205

Scheduling the Agent
1. Next select when the agent will run. The following list of options is

available:

Manually from Actions Menu

Manually from Agent List

If new mail has arrived

If documents have been created or modified

If documents have been pasted

Scheduled Hourly/Daily/Weekly/Monthly/Never

2. Select On Schedule Hourly from the pull-down menu and click the
Schedule push button to schedule the specified run time. The following
dialog box is displayed:

The example shows an hourly scheduled macro. You can specify for the
agent to run every 30 minutes, hour, every two, four, or eight hours.

3. Specify the start and end time each day.

4. Specify the start and end date for the agent to run, and whether to run
at weekends or not.

5. Specify the server on which the agent is to run. This is only applicable
for databases which are replicated across a number of servers. If the
agent is modifying data in the database, it should just run once on one
server. Then the changed data is replicated to the other replicas of the
database.

206 Lotus Notes Release 4.5: A Developer’s Handbook

Selecting Documents to Be Processed
This selection defaults intelligently depending on the option selected for
scheduling the agent. For example, if the agent is scheduled to run if new
mail has arrived, this option is set to Newly Received Mail Documents, and
it cannot be changed.

You can further select which documents are processed by specifying search
criteria.

1. For example if you want to only process documents with ISO9000
in the subject, click on the Add Search push button to activate the
Search Builder.

2. From the Condition drop-down box, select By Field.

3. In the Search for documents where field: box, select Subject.

4. Select Contains.

5. Type in the search criteria ISO9000.

6. Click on OK to save the search criteria.

Specifying What the Agent Should Do
There are three ways of specifying what the agent should do.

Simple Actions
These are pre-defined actions which allow you to define a sequence of
actions without requiring any programming knowledge. They are ideal for
the end user who wishes to automate some routine tasks. The simple
actions available are:

Chapter 8: Using Agents 207

Copy to database

Copy to folder

Delete from database

Mark document read

Mark document unread

Modify field

Modify fields by form

Move to folder

Remove from folder

Reply to sender

Run agent

Send document

Send mail message

Send newsletter summary

Run @Function formula

In our previous example, we used the Search Builder to select only
those documents which had ISO9000 in the subject. Now we can easily
write a simple action to automatically forward those mail items to the
departmental ISO9000 coordinator and store the documents in the
ISO9000 folder.

To do so:

1. Return to the Agent Builder window.

2. Click the Simple Action(s) option button.

3. Click the Add Action push button.

4. In the Action field, choose Send Mail Message.

5. In the To: field, type the name of the ISO9000 coordinator.

6. Type a subject.

7. In the Body: field, type your message.

8. Select the Include copy of document check box.

208 Lotus Notes Release 4.5: A Developer’s Handbook

9. Click on OK. The completed Add Action dialog box looks like this:

10. Click on the Add Action push button again.

11. This time, select Move to Folder in the Action field:

12. Select the folder to move the document to, in our example ISO9000.

13. Click OK.

We now have an agent with two simple actions which will forward the
document and then store it in a folder.

Chapter 8: Using Agents 209

Formulas
Formulas can use the full range of @Functions available with Lotus Notes.

Note Interactive functions and functions that impede the progress of the
mail router are ignored when documents are mailed into the database, for
example:

@DbColumn

@DbCommand

@DbLookup

@MailSend

@Prompt

1. In the Agent Builder window, click on the Formula option button.

2. Start entering a formula in the programmer pane. For example, if you
want to forward a document but only if it does not have attachments:

 @If(@Attachments>0;
 @Return("");
 @MailSend("Erika Smith"; ""; ""; Subject; _
 "Please handle this"+@Newline; "Body" ; "")
);

LotusScript
Agents can also be written in LotusScript.

1. In the Agent Builder window, click on the Script option button.

2. Start entering a LotusScript program in the programmer pane.

Control is always passed to the agent using the Initialize event, so this is
where the program should begin.

This is a simple example of a LotusScript program:

Sub Initialize
 Set s = New NotesSession
 Set db = s.CurrentDatabase
 Set documents = db.UnProcessedDocuments
 For d = 1 To documents.Count
 Set doc = documents.GetNthDocument(d)
 Set Subject = doc.GetFirstItem("Subject")
 If Instr(Subject.Text , "ISO9000")>0 Then
 Call doc.PutInFolder("ISO9000")
 End If
 Next
End Sub

210 Lotus Notes Release 4.5: A Developer’s Handbook

When an agent runs, it runs once and must process all the documents
selected. Note the use of the UnprocessedDocuments property. The
UnprocessedDocuments property of the NotesDatabase class applies only
to agents and view actions. For agents, this property contains all documents
not yet processed by the agent or the result of the search specified to the
agent builder, depending on how you create the agent. For view actions,
this property contains all selected documents.

Displaying the Agent Pop-up Menu
1. To display the pop-up menu of an agent, click with mouse button 2 on

an agent listed in the navigation pane. The agent pop-up menu is
displayed as follows:

2. From this menu you can:

Display the agent Info Box.

Cut and copy to the clipboard, and paste from the clipboard.

Clear the agent, which means deleting it.

Edit the agent, which is the same as double-clicking it, to display the
Agent Builder window.

Run the agent.

Test the agent, which tells you how many documents the agent will
process.

Enable or disable the agent.

Look at the agent log.

Chapter 8: Using Agents 211

Summary
Agents can be used for automating many routine tasks in Notes. They have
highly flexible scheduling capabilities, and a range of algorithms for
selecting which documents should be processed.

They can be provided by developers as part of an application or
installation, or can be set up by users to automate routine tasks such as
filing or replying to mail.

They can be written in Notes Simple Actions which are ideal for the end
user as no programming knowledge is required, or you can use the rich
facilities of @Functions or LotusScript.

212 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 9
Calendaring & Scheduling

Lotus Notes Release 4.5 now has native Calendaring & Scheduling
capabilities built directly into the server and each client. This new feature
allows users to create and manage day-to-day appointments in their mail
file, book meetings with other people while checking their availability, look
at two days, one week, two weeks or a month of their diary at a time and
many additional features.

This chapter aims to focus on the new tools available to the Notes
application developer from Calendaring & Scheduling, rather than a
detailed description of how to use Calendaring & Scheduling in the new
Release 4.5 mail file template.

This chapter was written using a beta copy of Notes Release 4.5 and as
such, some of the information may have changed slightly in your shipped
version of the product.

By the end of this chapter you will know:

What Calendaring & Scheduling is.

How to use the new LotusScript classes and methods related to
Calendaring & Scheduling.

How to use the new @Functions related to Calendaring & Scheduling.
How to create a view using the new calendar view type.
How to use the new date and time controls.

What Is Calendaring & Scheduling?
If you have ever used Lotus Organizer you will know that you can create
appointments in your diary, create alarms to remind you of meetings you
must attend and add your mother’s birthday so you don’t forget to send
her a card!

Now, you can do all of these things using Lotus Notes and take it one step
further. Not only can you use Notes as a diary and a reminder, you can
now schedule meetings with other people, check their diaries to find the
most convenient time to have the meeting, find a room in which to hold the
meeting and reserve resources such as overhead projectors and video
players.

 213

Calendar Views
The Notes Release 4.5 mail database contains a new view called the
Calendar view. This is a graphical representation of a diary, very much like
that in Lotus Organizer, that you can use to show your appointments in two
day, one week, two week or one month formats. Below are the four
different calendar view types:

Two day view:

214 Lotus Notes Release 4.5: A Developer’s Handbook

The week view:

The two week view:

Chapter 9: Calendaring & Scheduling 215

The month view:

To book an appointment in your diary you select the New Appointment
action button which displays the New Appointment form. From here you
can create a Personal Appointment, an Anniversary, a Meeting, a Personal
Reminder or an Event.

Having selected the people you want to attend the meeting you can have
Lotus Notes check their diaries to see if they are free on the date and time
you specified.

To be able to check whether the invited people are free or not, Notes uses
something called the Free-Time system.

Free-Time System
The Free-Time system is divided into three separate areas.

Checking for Users’ Free Time
The Free-Time Manager is responsible for collecting all the available free
time found in each user’s mail file and posting it into the Free-Time
database that is stored on the server.

216 Lotus Notes Release 4.5: A Developer’s Handbook

Free-Time Database
The second element is the Free-Time database. When the Free-Time
Schedule manager starts up for the first time on the server, it creates a new
database called BUSYTIME.NSF and populates it with the names of all the
people found in the Public Name and Address Book that have their mail
server set as the current server’s name.

The Free-Time database contains the following fields.

Field Name Field Description

$BusyName The distinguished name of the person/resource/room that will
be busy for the period.

StartDateTime A Notes DateTime field specifying the beginning of the busy
period.

EndDateTime A Notes DateTime field specifying the end of the busy period.

BusyPriority A number between 1 (lowest, pencilled in) to 15 (highest). 15
means that the person is not available, that is, out of the office, on
vacation and so on.

BusyType A number between 1 and 15. A value of 0 (zero) means no type.

WorkWeek From the user’s profile document. A list of DateTime ranges that
shows the allowable free times in the week. Each entry
corresponds to a day in the week.

ScheduleAccess From the user’s profile document. A list of people who can create
busy time for this user.

TimeZone From the user’s profile document. The time zone of the user.

$BusyProfile A marker that tells the Free-Time Database Manager that this
record contains user-specific Free-Time database information.

This database can only be accessed by the Free-Time manager and is
structured to allow fast querying of people’s schedules.

Calendar Connector
Lastly, there’s the Calendar Connector. When a client asks the free-time
manager whether a person is free to attend a meeting it will do a number
of tasks.

1. Look the person up in the Name and Address Book.

2. If the person’s free-time information is stored on that particular server
it will look in the free-time database.

3. If the user is found to be on another server, the request is passed to the
Calendar Connector server task. If the person is in the same domain,
the Calendar Connector will chain the request to the appropriate server.

Chapter 9: Calendaring & Scheduling 217

4. If the person is in an adjacent domain, the Calendar Connector uses the
information stored in the Calendar Domain field in the corresponding
domain document in the Public Name and Address Book. Each domain
has a designated calendar server that is set up to receive requests from
external domains. When a request is sent from one domain to another,
the designated calendar server is responsible for receiving the query,
passing it to the correct server within its own domain and returning the
information back to the requesting domain.

5. If the person is in a non-Notes foreign domain, the Calendar Connector
uses two values from field information stored in the foreign domain
document in the Public Name and Address Book. The first is the
Calendar Server Name and the second is the Calendar System. This
second field stores the type of calendaring system that the calendar
connector should connect to, such as Organizer 2.1 or IBM OfficeVision,
and then makes the request to that system through a plug-in.

Note Lotus will develop calendar plug-ins for Lotus Organizer 2.1
and for OfficeVision. Lotus will also develop tools to simplify the
migration to Notes 4.5 from either of these systems.

6. The returning result of the query is then passed back to the client.

Resources
Notes Release 4.0 included a Room Reservation template, RESERVE4.NTF,
that allowed you to create resources and have people book them. This has
been enhanced in Notes Release 4.5 to enable Calendaring & Scheduling
users to book meeting rooms and resources and to interact with the
Free-Time system.

Resources are split into two separate area’s, Rooms, that are physical
meeting places within a location that can contain up to a maximum number
of specified people and Other Resources that include items such as overhead
projectors, video players, televisions etc. that can be booked together with a
room.

Once a reservation database has been created, designated Resource Creators
can add sites, rooms and resources to the database for other people to use.
When a resource is created within the database, a corresponding item is
added to the Public Name and Address Book in the Mail-In Databases and
Resources view.

Essentially, a resource database is an extension to the normal mail-in
database that is integrated into the scheduling system.

218 Lotus Notes Release 4.5: A Developer’s Handbook

Programming With Calendaring & Scheduling

Lotus Notes Release 4.5 has a number of new LotusScript commands and
@Functions to support Calendaring & Scheduling.

LotusScript
Below is a summary of the LotusScript properties, events and methods.

Properties
NotesDocumentCollection = NotesUIView.Documents

Contains the documents that the current event will act on.

Boolean = NotesUIView.IsCalendarView

True if the current view is the calendar style rather than the traditional
style.

NotesDateTime = NotesUIView.CalendarDateTime

This is only valid for calendar views and will allow you to set or query the
current date and time for the view.

Events
NotesUIView.QueryOpenDocument

Allows you to query if a document is being opened.

NotesUIView.RegionDoubleClick

Triggered when a user clicks on a region within the Calendar view that is
defined by the type of view currently open. There are two regions in the
Calendar view, the specific time slots and the blank area within a day.

NotesUIView.QueryPaste / NotesUIView.Paste

Allows you to handle paste commands from the user.

NotesUIView.QueryDragDrop / NotesUIView.Drop

Allows you to handle drag and drop operations from the user.

Note You should first set the value of CalendarDateTime to the date and
time you wish to paste or drop the documents into.

NotesUIView.QueryDelete / NotesUIView.Delete

Allows you to handle delete requests from the user.

Chapter 9: Calendaring & Scheduling 219

Methods
Set NotesDateRange =
notesSession.FreeTimeSearch(window,duration,names
[,firstfit])

Creates a call to the Notes Free-Time Manager requesting the availability of
one or more people, where window is a NotesDateRange for the start and
end dates in which the search is to be performed, duration is an integer in
minutes and names is a string or an array of strings containing the names of
the people for the request to be performed on.

@Functions
Below is a summary of the @functions available for Calendaring &
Scheduling.

@Function name Description

@CheckAlarms Triggers the alarm daemon to check for
new alarms in the mail file.

@EnableAlarms(0 or 1) Starts or stops the alarm daemon.

@GetProfileField(profilename;fieldname
[;username])

Retrieves a field from a profile document,
and caches the field value for the
remainder of the session.

@SetProfileField(profilename;fieldname;
value [;username])

Sets the value of a field in a profile
document.

@Command([CalendarFormat];number) Changes the calendar view to a different
format where number is 2, 7, 14, 30.

@Command([EditProfile];
“profilename”; “username”)

Opens a new or existing profile document
in edit mode.

@Command([CalendarGoto];timedate) Goes to a particular date in a calendar
view.

@Command([FindFreeTimeDialog];[req
people]; [optpeople]; [rooms]; [optrooms];
[reqresource]; [optresource]; [removed];
[StartDateTime]; [EndDateTime])

Opens the Free Time dialog box to allow
searches for available meeting times.
Optional parameters allow the developer
greater flexibility.

220 Lotus Notes Release 4.5: A Developer’s Handbook

The Calendar View
From a designer’s perspective, the calendar view is identical to the
standard outline view, with columns, formulas, a selection criteria
and fonts.

To create a calendar view there are a number of steps you must follow.

1. Firstly, create a new view in the database you wish to add the calendar
view to by selecting Create-Design-View from the Notes menu bar.
Open the new view by double-clicking on its name.

Select View-Design Properties from the menu to display the View
InfoBox. Click on the style drop-down listbox and select the
Calendar style.

2. For documents to be displayed in a calendar view you need to provide
a date, a time and a description of the event. At a minimum you must
provide the view with a start date and a textual description. To create
the view you must set up the columns in the correct order.

The first column must contain a valid date value and it must be
sorted. To improve the view, add a time value to the date. This
column should be hidden.

The second column should contain the duration of the event in
minutes or zero for no duration. This field should be hidden.

The third and subsequent columns contain the text that is displayed
for the event.

For time-based events, you can use the third column to hold the
starting time of the event and the fourth column to hold the
description. This ensures that the event appears in the correct
time slot.

Chapter 9: Calendaring & Scheduling 221

Tip To have an event displayed in a calendar view with Enable Time
Slots enabled in the View InfoBox on the date format tab, set the third
column to contain the start time, change the date format to display
only hours and minutes and change the font size of the column to
Helv 8 point.

3. You must also create a view selection statement so that these columns
are populated correctly.

This is how the view looks when in the design pane when you have added
the columns.

These are the formula’s for each of the columns:

StartDate is a date-time variable that contains only a date, StartTime is a
datetime variable that only contains a time. This example shows how to join
the two together to create a single date-time field.

Column Formula Attributes

1 @TextToTime(@Text(StartDate) + "" +
@Text(StartTime))

Hidden, Sorted

2 30 Hidden

3 StartTime Formatted for hours and minutes
only, blue Helv 8 font.

4 SeminarName Helv 8 point font.

222 Lotus Notes Release 4.5: A Developer’s Handbook

This is how the item appears when displayed using the calendar view.

Note It is possible to create a calendar view with just a date (no time) and
description column, however, you will not be able to use the Enable Time
Slots feature.

Date and Time Controls
It is now possible from Notes Release 4.5 to include pop-up controls for
date and time fields in a layout region that is designed to behave in the
same way as the Lotus Organizer controls.

Date Control
The date control allows the user to quickly select a date by clicking on the
small calendar icon next to the field in which it relates to. When the user
clicks on the icon, a pop-up box will appear in which they can scroll
forwards and backwards though the months of the year and select an
appropriate date by clicking on it with the mouse.

Note To create the date pop-up control, the field must be in a layout
region, it must be set to a time type and set to show a date format.

Chapter 9: Calendaring & Scheduling 223

Time Control
The time control is a pop-up box that enables the user to select either a
single time or a duration by using the mouse to drag the time bar up and
down the scale.

To create a simple time control, create a field in a layout region and assign
the type to time and to show only a time format.

Note To add the duration to the pop-up, select the Allow Multi-Values
check box on the InfoBox for the field.

224 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 10
Notes Workflow: An Example

Creating a Database Using the Approval Cycle Template

Notes Release 4 provides many database templates that can be used to
create Notes databases. Some of the templates are new in Release 4.

You can use the templates both for typical office work and for Notes
database administration. For example, to look at the templates you can
use for administration purposes:

1. Choose File - Database - New.

2. Check the Show advanced templates check box:

Additional templates are displayed.

You can use the templates to create simple databases without modifying the
template. In this case, you would typically check the Inherit future design
changes check box on the New Database dialog box. This ensures that
changes made to the original template will be reflected in your version of
the database.

Or, you can use the templates to create customized databases and modify
the template as required. In this case, you would typically deselect the
Inherit future design changes check box on the New Database dialog box.
Changes made to the original template will not be reflected in your version
of the database.

225

The Approval Cycle Template
In this chapter, you are going to work with a workflow database which
is based on the Approval Cycle template. This template is suitable for
workflow types of applications, for example, Asset Purchase Request,
Travel Expense Account Approval, and the like.

The Approval Cycle template provides design forms and a design subform.

Note The source code of the Approval Cycle template is provided in
Appendix A.

You are going to look at the Application Profile form and the Approval
Logic subform. You can use the Application Profile form to describe the
characteristics of a workflow object, such as a Travel Expense Account.
You can use the Approval Logic subform for an application request form.
You can define the required parameters in the Approval Logic subform,
such as how many people will approve the travel expense, by what date,
and status-specific information.

This is the specification of the Application Profile form:

Routing Type: Serial or Parallel

Serial routing means that an approval request is sent to another
approver once the current approver has finished working with it.
Parallel routing means that an approval request is sent to all approvers
at the same time.

Routing Delivery Type: Document Link

Document Link is the default routing delivery type. Approvers open
their mail and see a document link icon pointing to a specific approval
request sent by another user. When they click the link icon, the
approval request is opened.

If the routing delivery type is Entire Document, approvers receive the
complete document in their mail, not a link to the document.

Number of Approvers: 1 to 5

The design of the Approval Cycle template provides for a number of
approvers between one and five. However, there is no limit on the
number of approvers you can assign. Keep in mind, though, that there
is a push button created for each approver. If you increase the number
of approvers, there will be a corresponding number of push buttons,
which can easily fill up the screen.

226 Lotus Notes Release 4.5: A Developer’s Handbook

Method to specify an approver: Define in Profile, Entered on the form
by the submitter, Retrieved from a database.

If you choose Define in Profile, you need to specify an approver when
you create an application profile.

If you choose Entered on the form by the submitter, the submitter of
the request form needs to select the approvers when creating an
approval request.

If you choose Retrieved from a database, you need to specify an
Address Book name in a following dialog box. Approvers are selected
based on the Manager field of an originator’s document in the Address
Book you specified.

Actions to be taken: Approve, Deny.

Upper limit for each part of the approval cycle: Number of days.

You can specify how many days an approver can take to complete the
approval request.

Action for expiration: Approve the form, Reject the form, Send a
reminder, Do nothing.

When the specified number of days has passed for each part of the
approval cycle, one of the above-listed actions is performed.

Using the Approval Cycle Template
You usually need to prepare an application form in advance to use the
Approval Cycle template. In our example, we have written a form that
contains a Travel Expense Account (TEA) workflow, and have added it to
the Approval Cycle template.

The TEA form consists of two subforms:

The TEA subform, which we added.

The Approval Logic subform, which is included in the Approval Cycle
template.

Chapter 10: Notes Workflow: An Example 227

Adding the Database to Your Workspace
To add the Approval Cycle template to your workspace:

1. Choose File - Database - New:

Tip A shortcut is pressing Ctrl - N.

2. Type a server name, database title, and database file name. In our
example, we called the database Approval DB.

3. Click the Template Server push button to select a server for the
template.

4. Choose the Approval Cycle template from the list of templates.

5. Deselect the Inherit future design changes checkbox. The completed
New Database dialog box looks like this:

228 Lotus Notes Release 4.5: A Developer’s Handbook

6. Click OK.

7. Press the ESC key to leave the information window. The Design toolbox
is shown.

8. Press the ESC key to leave the Design toolbox. Your version of the
Approval database has been added to your Notes workspace.

Note You also need to specify the appropriate Access Control List
(ACL) for this workflow example. In our example, we have defined
four users: Form Administrator, Request Originator, Manager,
Accountant. All of them have access to the Approval database.

Caution Users accessing the Approval Cycle database must have
access to the Notes Release 4 Address Book. Some functions do not
work with a Release 3 Address Book.

Creating an Application Profile
First create an application profile for the application form.

1. Open the Approval DB database.

2. Choose Actions - Create Application Profile from the menu:

3. The Application Profile is displayed. It looks like this:

Chapter 10: Notes Workflow: An Example 229

4. In the Basics section, specify a name for the approval form.

Note This is a required field. The name you specify here must be the
same as the Application Form name you will define later on.

5. Click the arrow next to Routing type to display the available options:

These are the available Routing type options:

6. Click OK. Leave the Routing type value unchanged.

7. Click the arrow next to Routing delivery to display the available
options:

230 Lotus Notes Release 4.5: A Developer’s Handbook

Note If there is no arrow available next to Routing delivery, follow
these steps to create one:

Return to the Design toolbox window.

Click Design, then Forms.

Open the Application Profile listed in the view pane.

Position the cursor in the Routing delivery field and click mouse
button 2 to display the Field InfoBox.

Change the value displayed in the Type field from Computed to
Editable.

Close the InfoBox.

Close and save the form.

8. Click OK. Leave the Routing delivery value unchanged.

9. In the Approval List section, specify the number of approvers.
The range is 1 to 5. In our example, we specified 2 approvers (the
supervisor and the accountant).

Specify whether or not the approver list is editable. In our example, it is
not editable.

The Approval List section looks like this:

10. In the Approver details section, you see two buttons, one for each
approver. They look like this:

Chapter 10: Notes Workflow: An Example 231

11. Click the Approver 1 button to display a dialog box where you can
specify information related to the approver.

Note If this does not display the dialog box, click the button again.

The dialog box looks like this:

12. Click the arrow next to Source of name to display the available choices:

13. If you select the Retrieved from a database option and click OK, a
dialog box is displayed. You need to specify the following information:

In our example, we left the Source of name field unchanged. This will
make it a bit easier to perform our workflow example.

14. Click the arrow next to Approver name to display the Address book
from which to select the approver name.

232 Lotus Notes Release 4.5: A Developer’s Handbook

15. Specify the appropriate title for the approver in the Approver function
field.

16. In the Approval window field, specify how long the approver can take
to handle the approval request.

17. In the If Window is missed field, specify the action to be taken when the
approval window has passed. These are the available options:

In our example, we selected Send a reminder.

18. Click OK to return to the Application Profile form.

19. Click the Approver 2 button to specify the required information for the
second approver.

20. Optionally, fill in the Options section. In our example, we specified Yes
for Approvers to enter comments when they approve or reject a
request.

21. We also assigned a form administrator.

22. You would not usually modify the Terminology section shown at the
end of the Application Profile form. It shows information related to the
workflow status. This information is displayed in an application request
form to indicate the current status.

23. Click the Close button and save the new document.

Chapter 10: Notes Workflow: An Example 233

Creating the Approval Request Form
In the following, you are going to create a Travel Expense Account (TEA)
approval request, which will be sent to two approvers. You will learn how
to use the Approval Logic subform.

This example is of type document link, which means that all the approvers
share the same approval request. You can also create a non-share type of
workflow which means that an entire approval request form is sent to the
approvers’ mail box. If you want this type of workflow, you need to select
the Entire document option as Routing delivery type, as explained in the
previous section. However, selecting this type of workflow would require a
more complicated approval request form than we use in our example here.

To create the approval request form:

1. On the Design toolbox, choose Create - Design - Form from the menu.

2. The Insert Subform dialog box is shown. Select Expense Subform.

Note We created the expense subform. It is not provided as part of the
Approval Cycle template. You need to create your own subform or
form as required. For details on how to do this, refer to the chapter on
Designing Application Forms.

234 Lotus Notes Release 4.5: A Developer’s Handbook

3. Click OK. Our example of the expense subform looks like this:

4. Move to the end of the subform where you can see the blinking cursor.
This is where you are going to create a collapsed section.

5. Choose Create - Section - Standard.

6. On the InfoBox, type the collapsed section title. In our example, we
typed Approval Information.

7. Type the section field name. In our example, we typed ApprInfo.

8. In the Section border area, we chose a border style with an outline.

Tip It is quite easy to insert a subform or other data into a collapsed
section if you choose a border style with an outline.

Chapter 10: Notes Workflow: An Example 235

The completed InfoBox looks like this:

Notice how the newly created section appears at the cursor position.
This is what it looks like:

9. Close the InfoBox.

10. Click on the title of the new collapsed section to expand it.

Tip You can also click on the triangle next to the title.

11. Before you can insert a subform, you need to follow these steps:

Place the cursor on the bottom line of the box surrounding the
Approval Information section, and click once. You should now see this:

12. Click on the line displayed under the Approval Information section.
The cursor should now be blinking on the new line.

236 Lotus Notes Release 4.5: A Developer’s Handbook

13. Choose Create - Insert Subform from the menu.

14. On the Insert Subform dialog box, select the ApprovalLogic subform.

15. Click OK. The design of the ApprovalLogic subform is displayed, as
shown in the following figure:

Click on the Approval Information title. The section is collapsed.

Chapter 10: Notes Workflow: An Example 237

16. Click mouse button two to display a pop-up menu and select Form
Properties to display the InfoBox.

Tip A shortcut for displaying the InfoBox box is pressing ALT
and ENTER.

17. Type the form name.

Note The form name must be the same as the name specified for
the application profile you created before.

18. In our example, we deselected Include in Menu.

The completed InfoBox looks like this:

19. Choose Close and save the new form.

Performing a Workflow
In our example, four users are involved in the workflow:

Dan McDermott, form administrator

Nick Clark, submitter of a request

Robert Jasen, manager of Nick Clark

Martha O’Reilly, accountant.

All the users have access to the Approval database. Make sure that you give
your users access to the database as required.

238 Lotus Notes Release 4.5: A Developer’s Handbook

Creating a New Request
You are now Nick Clark, the submitter of a request. To create the request,
follow these steps:

1. The Approval DB database should be open.

From the navigator pane, choose All Requests under Folders and
Views:

2. Click the Create New Request button. The following New Request
dialog box is shown:

All the request forms that you created before are listed in the box.

Note The form names are taken from the Workflow Object column
that you see when you select Application Profiles in the navigator pane.

3. Choose the Expense form, which is our approval request form, and
click OK.

Chapter 10: Notes Workflow: An Example 239

4. Fill in the fields as required, for example:

5. Move to the bottom of the request form.

6. If the Approval Information section is collapsed, click on its title to
expand it.

7. If the Additional Approver Information section is collapsed, click on its
title to expand it.

240 Lotus Notes Release 4.5: A Developer’s Handbook

Submitting the Request
To submit the request:

1. Click the Submit for Approval button.

The following message is displayed:

2. Click OK to leave the message window. You can see the new request
listed in the Date column. The status is Awaiting Approval. It looks like
this:

3. Select Next Approver in the navigator pane. The view on the right-hand
side now looks like this:

4. Close the database.

Working with the Request: The Manager
You are now Robert Jason, the manager.

1. Open your mailbox.

Chapter 10: Notes Workflow: An Example 241

You can see mail listed in the All documents view. The mail has been
sent by Nick Clark:

2. Open the mail sent by Nick Clark.

3. To open the approval request, double-click the document link icon
pointed to by a red arrow:

4. Move to the bottom of the document.

5. To see the due date and other workflow-related information, expand
the Approval Information and Additional Approver Information
sections. This is what you can see:

242 Lotus Notes Release 4.5: A Developer’s Handbook

The action bar at the top of the window shows three buttons:

6. Click the Approve button to approve this request.

7. Type your comments as required.

8. Click OK. A message tells you that the request is sent to the next
approver, Martha O’Reilly.

9. Click OK to leave the message box.

10. Close your mailbox.

Working with the Request: The Accountant
You are now Martha O’Reilly, the accountant.

1. Open your mailbox.

2. Open the request mail from the submitter Robert Jason.

Chapter 10: Notes Workflow: An Example 243

3. To open the approval request, double-click the document link icon
pointed to by a red arrow.

4. To see the request-related information, move to the bottom of the
request form and expand the Approval Information section if required.

You can see that the previous approver has approved this request.

5. The action bar at the top of the window shows four buttons:

244 Lotus Notes Release 4.5: A Developer’s Handbook

6. Click the View Comments button to see the comment added by the
previous approver. It looks like this:

7. Click OK to leave the comments box.

8. Click the Approve button and type your comments.

9. Click OK. A message tells you that the submitter of the request has
been notified.

10. Click OK and close your mail.

Chapter 10: Notes Workflow: An Example 245

Checking the Status of the Request
You are again Nick Clark who submitted the request. Check the status of
the request.

1. Open your mailbox.

2. Open the mail sent from the accountant Martha O’Reilly.

3. To open the approval request, double-click the document link icon
pointed to by a red arrow.

4. Move to the bottom of the document and expand the two sections if
required. The Status column shows that all approvers have approved
your request.

246 Lotus Notes Release 4.5: A Developer’s Handbook

5. Click the View Comments button to see the comments added by the
approvers:

6. Click OK and close your mail.

You can also check the status of your request in the Approval DB database.

Note Users with reader access or above can check the status of their
requests in the Approval database.

7. Open the Approval DB database.

8. Select the All Requests view in the navigator pane. You should see your
request listed with a status of Complete.

9. Open the request and expand the Approval Information section to
display more details on the request.

10. Click the View Comments button to see the comments of the approvers.

11. Click OK and close the database.

This completes our workflow example. The following sections give more
detailed information on the design of the Approval Cycle database. Some
useful hints and tips are also provided.

Chapter 10: Notes Workflow: An Example 247

Approval Cycle Database: Design
The following explains the design of the Approval Cycle database.

How Does a Form Flow?
There are two choices to process a request form: DocLink and Entire
Document.

DocLink Form Flow
The following figure shows the DocLink type of form flow, which involves
three users. All the notifications to process a flow are sent by mail
containing a document link to an approval request document located in the
Approval DB. The approvers can see the same document submitted by a
requester for processing. Only the current approver can take an action
(Approve or Deny) to deal with the request. The network path, server
access authorization and appropriate database access controls are needed to
share the same database for the workflow.

Entire Document Form Flow
The following figure shows the Entire Document type of form flow. An
approval request form is sent to the mailbox of the next approver. The
approval status in the Approval Database is automatically refreshed after
an approver has processed a request.

DocLinkDocLink

 Requester

Deny

Submit Approve

Accountant

Notify by mail with DocLink

Approve or Deny

Manager

Approval DB

Approval
Request

Mail Flow

Document
Reference

Entire DocumentEntire Document

 Requester

Deny

Submit Approve

Accountant

Notify by mail with Document

Approve or Deny

Manager

Approval DB

Approval
Request

Mail Flow

Document
Reference

Approval
Request

Approval
Request

Approval
Request

248 Lotus Notes Release 4.5: A Developer’s Handbook

How Is the Approval Cycle Database Organized?

Relationship between Forms
The Approval Cycle template has two forms: The Application Profile Form
and the ApprovalLogic Subform. It is recommended to create at least one
document and one other form to use this template.

An Application Profile document must be created based on the Application
Profile form to describe workflow properties and to specify an Approval
form. The Approval form must include the ApprovalLogic subform and
your workflow contents, for example, a Travel Expense Account.

An approval request document is created from the Approval form every
time you start a workflow request. Approval status information is shown in
the approval request document.

The following figure shows the relation between the forms:

Procedure-Calling Sequence and Event Handling
Approval Request Form
An Approval Request form consists of two subforms: The Approval Logic
subform and the Travel Expense Account subform, which we added to the
Approval Cycle template. The TEA subform contains some Notes macros,
but no LotusScript programs. The ApprovalLogic subform contains a large
number of LotusScript programs and many Notes macros, which control an
approval request workflow.

The following picture shows part of the Approval Request document.
It shows two dotted boxes. The first box is part of the Travel Expense
Account subform, the second box is part of the ApprovalLogic subfom
with a collapsed section.

Create
Document

Reference

Application Profile
Form

Application Profile
Document

Approval
Form

Travel Expense Account
Subform

ApprovalLogic
Subform

Approval Request
Document

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

Request Flowing

Chapter 10: Notes Workflow: An Example 249

The Travel Expense Account subform has some Notes features such as a
layout region, option button, table, and others.

The ApprovalLogic subform has some event handlers and some global
subroutines which are usually called in event handlers.

Some routines are shown in the shadowed box at the bottom of the picture.
Some global routines are called by the Querysave event handler, which is
performed when you click the Submit for Approval button shown at the top
of the picture.

The Approval Logic subform does not have any user-defined classes and
data types. All the variables and procedures are public, since Option Public
is declared. Many variables are declared in global sections, and many
implicit variables are used in scripts.

Note When you add procedures or modify scripts, be careful about global
variables and implicit variables used in the ApprovalLogic subform to
avoid conflicts of variables.

Tip If you write LotusScript programs, you should use Option Declare,
user-defined classes and user-defined data types to make the programs
clear and safe.

Approval Request
Document

Travel Expense Account
Subform

Layout Region

Table

ApprovalLogic Subform

InitializeNewDoc
GetApprovaerNames
IdentifyUser
SetNextApprover
SetDueDate
SendNotification
ResetAuthorName
LoadDisplayField

Postopen
Postrecalc
Querysave
Queryclose

Globals

250 Lotus Notes Release 4.5: A Developer’s Handbook

When you created the Approval Request document, some events which are
defined in the ApprovalLogic subform are shown in the following picture.
This is because no event handlers are defined in either the Approval
Request form or the Travel Expense Account subform.

Eclipses displayed in gray are not performed because there are no scripts
defined for them.

Note You can use the Notes debugger to see the sequence of real-time
events. For more information on the debugger, see the chapter on
Programming in Notes.

Application Profile Form
The Application Profile form has some event handlers, which are included
in a form, a form global, fields and buttons. The Exiting event is performed
when you try to move the cursor from the Approval form name field to
another field, as shown in the following figure:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Initialize Open
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

Queryopen Postopen

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

Querymodechange

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Postmodechagne Querysave

Queryclose
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

Terminate

Mode Change Display

Edit

Close

Save

AAAA
AAAA

Event Handler

Event

Not DefinedApprovalLogic Subform
Event Sequence

Postopen
Postmodechange
Querysave
Queryclose

Click

Exiting

GetApproverDetailsGlobals

Chapter 10: Notes Workflow: An Example 251

You cannot move the cursor without typing a name, because the Exiting
event handler checks the field contents. The Approver button has a Click
event handler which is called by a mouse click trigger. Its handler calls the
global routine GetApproverDetails, which displays a dialog box created by
a layout region in the (Approverinfo) form.

The following picture shows an event sequence which occurs when you
create the Application Profile document. Eclipses shown in gray are not
performed, because there is no program defined for them.

You can use the Notes debugger to see the sequence of real-time events.
For more information on the debugger, see the chapter on Programming
in Notes.

Approval Cycle Database: Agent
The approval application requires an agent to deal with the due date
expiration in this example. When the due date has passed and the approver
has not taken any action, the agent processes the approval request
depending on the criteria specified in the application profile for the
due date.

Some Ideas on Adding Features to the Approval Database
Here are some ideas on possible additions to the approval database:

Approval delegation may be useful, in case some approvers are out of
the office and cannot process approval requests. You could add a
feature that lets approvers delegate approval responsibility to other
users.

Another idea is to make it possible for approval requesters to cancel
their requests before or during the workflow. This is not implemented
in the template right now.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Initialize OpenQueryopen Postopen

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

Querymodechange

Postmodechagne Querysave

QuerycloseTerminate

Mode Change Display

Edit

Close

Save

AAAA
AAAA

Event Handler

Event

Not DefinedApplication Profile Form
Event Sequence

252 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 11
Working With Lotus Components

Overview

By the end of this chapter you will know:

What the Lotus Components are.

How to create and access them using LotusScript.

How to modify their properties using LotusScript.

How to exchange data between a Component and Notes using
Notes/FX

How to link the Spreadsheet and Charting Component

How to use NotesFlow publishing

How to use LotusScript with Component events.

How to create and package your own Components.

What Are Lotus Components?
Lotus Components are small, fast, reusable software applets that
significantly extend the application possibilities for Lotus Notes Release 4.
They may be used on-the-fly by Notes end users or embedded by Notes
developers to create custom solutions.

On a technical level, Lotus Components are embeddable software modules
contained within the Notes container. They’re based on ActiveX (OCX)
embedding technology, which takes full advantage of the 32-bit architecture
of Notes 4.1 or higher. They share a consistent look and feel with the Lotus
User Interface (UI) including context-sensitive menu integration and
support for SmartIcons, InfoBox, live Status Bar, and right mouse-click
menus. Lotus Components also take advantage of specific Notes features —
such as LotusScript, Notes/FX 2.0, and security. In short, they are designed
to extend the functionality of Lotus Notes for both Notes users and Notes
application developers.

 253

The initial delivery of Lotus Components is a collection of focused business
applets called the Lotus Components Starter Pack. The Starter Pack
includes the following:

Lotus Spreadsheet Component

Lotus Chart Component

Lotus File Viewer Component

Lotus Project Scheduler Component

Lotus Draw/Diagram Component

Lotus Comment Component

Lotus Component Template Builder

The Template Builder application allows Notes application developers and
experienced Notes users to apply business logic and formatting to one of
the above components and save it as a new component.

Typically, each component is less than 1 megabyte in size and has an
activation time of a few seconds from a single mouse click.

Who Are They For?
Lotus Components represent an exciting new technology that provides
benefits to Notes application developers and end users.

Notes Application Developers
Lotus Components extend the functionality within a Notes application
development environment, making it easier and faster to develop richer
Notes applications.

A Lotus Component can be embedded into a form in a number of ways:
first, by using the Lotus Components Palette which is added to the Notes
title bar when the Lotus Components are installed; second, by embedding a
component into a form at design time; and last, by embedding a component
through LotusScript.

254 Lotus Notes Release 4.5: A Developer’s Handbook

After installing the Starter Pack the Lotus Component Palette will look
like this:

To use a Lotus Component, simply move the cursor to the rich-text field on
the document where you would like to insert the Component, click on the
Lotus Component Palette and select the Component you would like to
embed into your document.

Lotus Components are Notes/FX-enabled so developers can
bi-directionally exchange information between a Notes document and
a Lotus Component. Lotus Components also have a wide range of
predefined properties and methods, allowing the Notes application
developer using LotusScript to precisely define how a Lotus Component
looks and responds within a Notes application.

End Users
Notes users frequently require access to productivity tools while working in
a Notes application — they collaborate on forecasts, review documents and
display presentations — all usually requiring the time-consuming process
of attaching and launching large documents. Lotus Components make it
easier and faster for users to complete everyday business tasks while
remaining in the familiar Notes environment.

Notes end users can easily use a Lotus Component on an as-needed basis
by visually selecting the component they want, from within the Notes
desktop, via the Lotus Component Palette. While working with the Lotus
Component the user remains in the Notes environment, using the InfoBox,
SmartIcons and the status bar. Users leverage their existing knowledge of
working within Notes and require little training in the use of the
component. When a user receives a Notes document with a Lotus
Component, it quickly activates with a single click — no detaching or
launching.

Chapter 11: Working With Lotus Components 255

Lotus Spreadsheet Component

The Lotus Spreadsheet Component allows users to calculate and present
numerical data within Lotus Notes Release 4.1. For Notes applications
developers, it provides a tool to quickly embed powerful calculation
functions into Notes applications.

This is how the Lotus Spreadsheet Component looks, after some data has
been typed in and the cells formatted with color and different font styles.

Tip Note how the menu bar, SmartIcons bar and status bar change to
reflect the options available to the component you are currently using.

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

3D spreadsheet includes up to 256 worksheets x 256 columns x 16,000
rows

Create, import, and export Lotus 1-2-3 and MS Excel worksheets

Customizable AutoFill feature to build spreadsheets quickly

Relative and absolute cell references

Automatic formula syntax checking

256 Lotus Notes Release 4.5: A Developer’s Handbook

Lotus Chart Component

The Lotus Chart Component allows users to graphically depict information
from within a Notes document or a Notes application.

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

Dynamic linking to the Lotus Spreadsheet Component

A Photo-Realistic rendering engine allows charts to be drawn in true
perspective

Complete set of 2D and 3D chart types:

2D and 3D horizontal bar

2D and 3D vertical bar

2D and 3D horizontal stacked

2D and 3D vertical stacked

2D and 3D 100% horizontal stacked

2D and 3D 100% vertical stacked

Chapter 11: Working With Lotus Components 257

2D and 3D line

2D and 3D area

2D and 3D mixed bar, line, and area

2D and 3D pie and multiple pie

High-Low-Close-Open

2D xy (scatter diagram)

Series smoothing feature in Line and Area charts

Lotus File Viewer Component
The Lotus File Viewer Component allows users to view files within Notes
without launching the source application and opening the file. It
streamlines communication since users do not need the source application
installed on their PC to view files.

258 Lotus Notes Release 4.5: A Developer’s Handbook

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

Customizable sizing for Notes documents and applications

Graphics scaling for optimal viewing

Full zoom capabilities

Supports dozens of the industry’s most popular file types supported
including:

Rich text format (.RTF)
Text (.TXT)
Bitmap (.BMP)
Computer Graphics Metafile (.CGM)
Windows Metafile (.WMF)
Lotus PIC
JPEG, TIFF (.TIF)
CompuServe GIF
Executable file (.EXE)
ZIP file (.ZIP)
Microsoft Access (.ACS)
Microsoft PowerPoint 4.x, 7.0 (PPT)
Microsoft Excel (.XL*)
Microsoft Word for Windows 6.0 (.DOC)
Lotus 1-2-3 for Windows (.WK3, .WK4)
Freelance Graphics (.PRE)
Ami Pro (.SAM)
Ami Draw (.SDW)
WordPerfect 6.x (.DOC)
WordPerfect Graphics 2.0
WordPerfect for Macintosh 2.0, 3.0
Word for Macintosh 4.0, 5.0
Macintosh PICT
Macintosh PICT2

File Viewer lets you view files in many common file formats. If a file format
is not supported, File Viewer displays it as ASCII, if possible. If an ASCII
display is not possible, a message appears indicating that the file type is not
supported.

Chapter 11: Working With Lotus Components 259

Lotus Project Scheduler Component

The Lotus Project Scheduler Component provides users with all the tools
you need to track tasks and schedules and get a graphical snapshot of task
relationships.

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

Spreadsheet-style interface for easy data entry and viewing
Graphical Gantt Scale Column
Fully adjustable columns for customized schedules

Complete selection of time units: hours, days, weeks, months, quarters,
and years

Data entry via calendar feature — drag and drop
Linking of related tasks
Expandable and collapsible hierarchy of columns
Insert and delete columns
Customizable grid lines and styles

260 Lotus Notes Release 4.5: A Developer’s Handbook

Lotus Draw/Diagram Component

The Lotus Draw/Diagram Component allows users to create professional
drawings and diagrams such as timelines, organizational charts, and flow
charts within Notes.

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

Align, flip and rotate commands

Dynamic connectors linking drawn objects — as objects are moved,
connecting lines move with them

Selection of text shapes

Libraries of pre-designed diagrams and clip art

Edit points mode

Powerful text manipulation

Grid snapping

Chapter 11: Working With Lotus Components 261

Lotus Comment Component

The Lotus Comment Component allows users to add a comment to a Notes
document, business proposal, or presentation. To aid collaboration, the
Lotus Comment Component identifies who created the comment and the
time/date it was created. In addition, by using Lotus Notes security, it is
possible to restrict the access of your comments to a certain group of people
that you specify.

Highlights:

User interface integrated with Lotus Notes Release 4: context-sensitive
menus, live Status Bar, InfoBox, and SmartIcons

Single-click activation

Security capabilities to assign workgroup editing rights including: no
access, depositor, reader, editor and manager access.

Automatic sizing

Expandable and collapsible view

Title strip display showing author, date and time

262 Lotus Notes Release 4.5: A Developer’s Handbook

Lotus Components Template Builder

The Lotus Components Template Builder allows users and developers
to customize Lotus Components for their specific business needs. For
example, with the Lotus Template Builder, users and developers can
convert the Lotus Spreadsheet Component into a Sales Commission
Calculator for use throughout an organization. Customized Lotus
Components can be used by users or embedded into Notes applications.

Note By building on the standard Lotus Spreadsheet Component you can
add your own formulas, titles, text and color and create your own custom
Component templates. These custom templates can then be distributed to
other users and added to the Lotus Components Palette.

Chapter 11: Working With Lotus Components 263

Using Lotus Components With LotusScript

Each of the Lotus Components has a rich set of LotusScript class extensions
that the Notes application developer can use to control the way in which
each component is created, displayed and manipulated.

For an introduction into LotusScript, read the earlier chapter in this book on
Application Development.

Note There is a redbook available entitled LotusScript for Visual Basic
Programmers (Lotus Part Number:12498 or IBM Form Number 5624-4856).

Adding Lotus Components to a Form Using LotusScript
In the following example we will add a spreadsheet component to a
document by clicking on a button.

1. Firstly, create a new form by selecting Create-Design-Form from
the menu.

2. Add a button to the form by selecting Create-Hotspot-Button from
the menu.

Give this button a name and a title.

3. Add a field to the form by selecting Create-Field. Give this field a name
of Body and select Rich-Text from the Type drop-down listbox.

This is how the form will look in the design pane when it is completed.

264 Lotus Notes Release 4.5: A Developer’s Handbook

4. Now let’s look at the code. First, click on the button and make sure that
you have the Click event displayed in the design window.

Declare three variables in memory, the first from the
NotesUIWorkspace class so that we can get access to the current
document displayed on the screen and assign it to the second variable,
uidoc. The third variable is declared as a Variant type to hold the Lotus
Component object.

The next line down assigns the value of uidoc to the document open on
the screen.

Next, we do a very simple error check to ensure that the document is
actually open in edit mode by calling the uidoc.EditMode routine. This
error check is important as a Lotus Component cannot be added to a
form if it is not in edit mode.

If the document is in edit mode we move the cursor to the Body field
otherwise we go to the end of the program. An alternative here would
be to force the document into edit mode using the command:

uidoc.EditMode = True

Now comes the call to uidoc.CreateObject to actually create the Lotus
Spreadsheet Component.

Set mysheet = uidoc.CreateObject("Sheet1",_
 "Lotus.Spreadsheet.1")

The syntax for CreateObject is

Set handle =
notesUIDocument.CreateObject([name$],type$[,filePath$]]])

The first parameter of CreateObject is an optional name parameter that
you can use to refer to the object at a later date by using the GetObject
call. The second parameter is the name of the Lotus Component entry
stored in the OLE registry. The third parameter is not used when
embedding a Component.

The following table lists the available types for each of the Lotus
Components in the Starter Pack.

Lotus Component Types

Lotus Component Name Type

Lotus Chart Component Lotus.Chart.1

Lotus Comment Component Lotus.Comment.1

Lotus Draw/Diagram Component Lotus.Draw.1

Lotus Project Component Lotus.Project.1

Lotus FileViewer Component Lotus.FileViewer.1

Chapter 11: Working With Lotus Components 265

If two Lotus Components of the same type are added to a document, for
example two Spreadsheet Components, both of the Lotus Components will
have the same name. This can be problematic if you need to gain access to
either one of the Lotus Components programmatically, because both the
Lotus Components would have shared the same name. If you do not assign
a name to the component, then it assumes the full Lotus Component name
in column one of the above table, for example, a spreadsheet component
becomes “Lotus Spreadsheet Component,” so to get a handle to the
Component you would use the following call:
Set mysheet = uidoc.GetObject("Lotus SpreadSheet Component")

Setting and Modifying Properties
Each of the Lotus Components has a wide range of properties that can be
used to control the way that data is displayed as well as numerous other
features.

In the following example we will create a Chart Component from a button
and set some of its properties by following these steps:

Set the chart type to a 3d pie chart
Set a title for the chart and the series
Set a maximum data range
Fill the data table with values and titles
Display the legend at the bottom of the screen
Display each segments value on the chart
Explode each segment in the chart

266 Lotus Notes Release 4.5: A Developer’s Handbook

This is how the final chart will look after the button has been clicked:

Now, create a new form and create a button and a rich-text field as before.

The following is the source code used to create the above chart from the
click event of the button. Pay special attention to the second line in the
program that tells you where to put the charting constants file,
CHCONSTS.TXT, in the program.

The example has been commented to describe what is about to happen in
the next line of code.

Sub Click(Source As Button)
 '** You must include the %include "CHCONSTS.TXT" in the
 '** forms Globals - Options section.
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim mychart As Variant
 Dim MyOffset As Single

 '** set uidoc to the open document
 Set uidoc = ws.CurrentDocument
 '** make sure the doc is in edit mode
 If uidoc.EditMode = True Then
 '** move the cursor to the body field
 uidoc.GoToField("Body")
 '** create an object and call it Chart1 from the
 '** Lotus.Chart.1 component

Chapter 11: Working With Lotus Components 267

 Set mychart = uidoc.CreateObject("Chart1", _
 "Lotus.Chart.1")

 '** turn off repaint for faster updates
 mychart.Repaint = False

 '** Set the new chart type to a 3d Pie chart. The
 '** constant CHChartType3dPie is in the file
 '** CHCONSTS.TXT which must be included in the
 '** Global options for the form.
 mychart.ChartType = CHChartType3dPie

 '** Now we will set various properties of the chart
 With mychart
 '** Set the chart title
 .Title.Text = "Average Costs"
 '** make the legend visible...
 .Legend.Location.Visible = True
 ' ** .. and put it at the bottom
 .Legend.Location.LocationType = _
 CHLocationTypeBottom
 '** set the maximum no of rows to 4
 .rowcount = 4
 '** set the maximum no of columns to 1
 .Columncount = 1
 '** make sure we are using column 1
 .Column = 1
 '** set the column label title
 .ColumnLabel = "1996/7"

 '** set the current row to 1
 .Row = 1
 '** set the value to 2500
 .Data = 2500
 '** set the label to PC's
 .RowLabel = "PC's"

 '** set up three more data points
 .Row = 2
 .Data = 2200
 .RowLabel = "Laptop's"

 .Row = 3
 .Data = 5500
 .RowLabel = "Servers"

 .Row = 4
 .Data = 990

268 Lotus Notes Release 4.5: A Developer’s Handbook

 .RowLabel = "Workstation"
 End With

 '** Now we want to display the values for each
 '** segment on the chart, add a bent line between
 '** the value and the segment, reduce the font
 '** size, format the output value and explode the
 '** chart
 '** set a 0.1 cm/inch offset
 MyOffset = 0.1
 '** iterate through each segment
 For i = 1 To 4
 With
mychart.Plot.SeriesCollection.Item(i).DataPoints
 .Item(1).DataPointLabel.LocationType = _
 CHLabelLocationTypeOutside
 .Item(1).DataPointLabel.LineStyle = _
 ChLabelLineStyleBent
 .Item(1).DataPointLabel.ValueFormat = _
 "$#,##"
 .Item(1).DataPointLabel.VTFont.Size = 9
 .item(1).Offset = MyOffSet
 End With
 Next

 '** turn repaint back on to update all changes
 mychart.Repaint = True
 End If
End Sub

Using Notes/FX With Components

The Lotus Notes Field Exchange technology can be used to exchange data
bi-directionally between a Lotus Component and Notes 4.X fields, making
data in Lotus Components available in ways that with LotusScript alone is
more difficult to obtain. Notes/FX is not a replacement for LotusScript,
rather it can be used to enhance the LotusScript environment.

One of the main reasons to transfer data between a Lotus Component and
Notes fields is to make data in the Lotus Component available for views.
Since views cannot access the data in a Lotus Component, the data must be
transferred to a Notes field which makes the data available for a view.

Chapter 11: Working With Lotus Components 269

Conversely, you can use LotusScript to write a value to a field that
exchanges information with a Lotus Component. The value written to the
field will be passed to the Lotus Component when the Component is
activated.

Note It is important to realize the value is not passed to the Lotus
Component until it is refreshed. Refreshing the Lotus Component can be
achieved either by making it active by a user single-clicking on it or via the
DoNotesFX LotusScript method.

DoNotesFX is a Lotus Components LotusScript method that forces field
exchange to take place.

Notes/FX Example
Notes/FX is now significantly easier to use than in previous versions. The
following is an example of how to extract three values from a spreadsheet
component and place them into Notes fields.

1. First, create a new form in your database and create four fields.

2. The field where the Component will be embedded needs to be a rich
text field.

3. Create the other three fields to be editable currency fields.

Following is a picture of how the form will look in the design pane.

270 Lotus Notes Release 4.5: A Developer’s Handbook

4. When creating the names for the three currency fields, keep in mind
that this is the name that the spreadsheet component will use to
exchange information with. In our example we have called them
Total_96, Total_97 and Total_98.

5. Next, save the form and create a new document from it using the
Compose menu.

6. Embed a Lotus Spreadsheet component into your rich-text field by
selecting Spreadsheet from the Lotus Components palette and format it
to your liking. In our spreadsheet we have three columns representing
the years 1996, 1997 and 1998 and rows for each month of the year. At
the bottom of each column is a totals formula that adds together all
the values for the year and it is these totals we are going to use
Notes/FX with.

7. To create the link between Notes and the Component, you need to tell
the component which cell must exchange information with which Notes
field.

Chapter 11: Working With Lotus Components 271

Place your cursor in the spreadsheet cell you wish to exchange the
information with and select Spreadsheet-Names from the menu bar.

8. In the Names dialog that is displayed, type into the Name field the
name of the Notes field you created earlier. The name you type in here
must be exactly the same as the Notes field you created on the form.

At the bottom of the dialog box you will find a reference to the cell
that this name points to. In this case the name Total_96 refers to the
cell B:14.

272 Lotus Notes Release 4.5: A Developer’s Handbook

9. So far what you have done is name a spreadsheet range as you could
with a Range-Name-Create command in Lotus 1-2-3. To enable the
exchange of information to take place, check the box marked ‘Share this
info with Notes using FX.’

10. Repeat the above steps to create a range name for each of the other two
currency fields, Total_97 and Total_98.

11. To test the field exchange, type in a new value into the spreadsheet
component. When the total at the bottom of the column is recalculated
with the updated figure, notice that the value in the Notes field also
changes.

Note You cannot edit the value in a Notes field and use Notes/FX to
update the value in the spreadsheet component if the cell you are trying to
update contains a formula.

Linking the Spreadsheet and Charting Components
As with Lotus 1-2-3 you may have a need to display your spreadsheet
information graphically using a chart.

With Lotus Components you can do this by setting four Components
properties using LotusScript, one for the Spreadsheet Component and three
for the Charting Component. They are as follows:

1. spreadsheet.TableName = string

This assigns a name to the table that you can access through LotusScript
and other external sources.

2. chart.ssLinkBook = string

This sets the chart up to use the named spreadsheet that you set in the
above item.

3. chart.ssLinkRange = range

This allows you to define a range from the spreadsheet that will be
charted. The range must be specified within quote marks, for example,
mychart.ssLinkRange = “a1:b4”.

Chapter 11: Working With Lotus Components 273

This sets up the method by which the two components will refresh. Valid
settings are:

No. Mode Name Mode Description

0 ChSsLinkModeOff The connection to the spreadsheet is not active.

1 ChSsLinkModeOn The spreadsheet is active. Lotus Chart
Component makes no attempt to interpret the
spreadsheet data. It uses the values set by the
Column, Row, ColumnLabelCount, and
RowLabelCount properties to determine the
data grid dimensions and then fills those areas
with data from the spreadsheet.

2 ChSsLinkModeAutoParse The spreadsheet connection is active. Lotus
Chart Component examines the spreadsheet
data and tries to determine what is a label and
what is data. It determines what it thinks the
dimensions of the data grid should be and
adjusts the values of the Column, Row,
ColumnLabelCount, and RowLabelCount
properties accordingly.

In the following example, a spreadsheet component has been embedded in
a form at design time. When the user clicks the Create Chart button, a
Charting Component is created and linked to the data within the
spreadsheet. If a value in the spreadsheet is changed it is automatically
refreshed in the chart.

274 Lotus Notes Release 4.5: A Developer’s Handbook

To create this example:

4. Create a new form.

5. Using the Lotus Component Palette, select the Spreadsheet Component.

6. Create a simple spreadsheet, like the one shown in the Notes/FX
example, with columns for each quarter and three rows for the years.

7. Type some sample information into the table.

8. Create a button on the form with the code displayed next to the click
event.

9. Create a rich text field and call it Body.

Below is the code used to create the chart shown. The program is
commented to show you what is about to happen in the next line of code.

Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 '** declare a variable for our chart
 Dim mychart As Variant
 '** declare a variable for our spreadsheet
 Dim mysheet As Variant

 '** set uidoc to the open document
 Set uidoc = ws.CurrentDocument

 '** make sure the doc is in edit mode
 If uidoc.EditMode = True Then
 '** move the cursor to the body field
 uidoc.GoToField("Body")
 '** create an object and call it Chart1
 '** from the Lotus.Chart.1 component
 Set mychart = uidoc.CreateObject("Chart1", _
 "Lotus.Chart.1")

 '** get a reference to the spreadsheet component
 Set mysheet = uidoc.GetObject(_
 "Lotus SpreadSheet Component")

 '** turn off the repaint for faster screen updates
 mychart.RePaint = False

 '** set the chart title and reduce the
 '** font slightly
 mychart.Title.VTFont.Size = 12
 mychart.TitleText = "Sales Forecasting 1996-1998"

 '** make the legend visible...

Chapter 11: Working With Lotus Components 275

 mychart.legend.location.visible = True
 '** .. and put it at the bottom
 mychart.legend.location.locationType = _
 CHLocationTypeBottom

 '** set the type of chart to a simple 2d bar chart
 mychart.ChartType = ChChartType2dBar
 '** set the maximum number of rows and columns
 mychart.RowCount = 4
 mychart.ColumnCount = 3

 '** Name the spreadsheet "Forecast"
 mysheet.TableName = "Forecast"
 '** point the charts linkbook at the
 '** "Forecast" spreadsheet
 mychart.ssLinkBook = "Forecast"
 '** set the range in the spreadsheet to chart
 mychart.ssLinkRange = "a1:d5"
 '** set the linkmode to "On"
 mychart.ssLinkMode = 1

 '** redraw the chart
 mychart.RePaint = True
 End If
End Sub

Using NotesFlow Publishing
Lotus Components use the NotesFlow Publishing capabilities of sharing
commands together with specified Notes menu-merging conventions to
facilitate seamless integration between Notes and Lotus Components.
Developers can use NotesFlow Publishing to create applications that
contain OLE objects and that isolate end users from jarring and potentially
confusing user interface context switches. This means end users can easily
perform Notes Actions when the embedded object has control of the User
Inferface.

When an embedded ActiveX Control is activated by an end user, the object
combines its own menu with that of Notes. The Notes Actions menu
typically includes a set of developer-specified commands that are usually
disabled when an object has the focus in a window. However, when
NotesFlow Publishing is enabled for an Action you can make the action
available to the active object as well as to Notes. Notes passes the action to
the control using Notes/FX 2 technology, allowing the control to put these
actions on its own actions menu.

276 Lotus Notes Release 4.5: A Developer’s Handbook

Action Publishing
Action Publishing uses Notes/FX 2 features to allow the application
developer to publish Notes actions on the menu bar when a component
is active.

An example of an action that you would like to have available at all times,
to Notes and to Lotus Components, would be the Forward action. Making
this action available to the Component means that the user does not have
to click out of the Component they are working on in order to mail it to
someone; they can simply click on Action-Forward in the menu bar.

To make an action available to a Lotus Component you need to do the
following:

Open the form where the action is that you would have appear on the
menu bar when a Lotus Component is selected.

In the InfoBox for the Action, select the NotesFlow Publishing Tab and
check the box marked Publish Action with OLE object:

You also have control over what happens to the OLE object when you
select this action.

Close OLE Object and return to Notes will shift the focus away from
the object, saving it if necessary and will return back to the Notes
document.

OLE Object remains open will keep the focus with the OLE object.

Bring document window to front will allow you to keep the OLE object
open and bring the current Notes document to the foreground. This
enables you to get input from the user without closing the object.

Chapter 11: Working With Lotus Components 277

Using LotusScript With Lotus Components Events
If you have used Lotus Components with Release 4 or 4.1 of Notes, you
may have used the Action Linking feature. This enabled you to capture
events from a Lotus Component, such as a mouse click, and pass it back to
Notes triggering an action in response to it using the ActionLinkSet/Get/Clear
statements.

This has been greatly simplified in Release 4.5 of Lotus Notes. You no
longer have to create an action or tell Notes the event that you want to trap,
as all the events are now displayed to you in the programmer pane.

To make use of the new functionality you must embed a Lotus Component
into the form at design time.

The following example shows you how this new feature of Notes works.

1. Create a new form in Lotus Notes by selecting Create-Design-Form
from the menu bar.

2. In the design pane, select the Lotus Component that you wish to add to
your form from the Lotus Components Palette.

3. Select the new Component with the mouse.
4. In the programmer’s pane, notice that the define drop-down list box

now contains the generic name for your new component. To the right of
this, the Event drop-down list box lists all the events that are available
to you.
Note The list of events will differ depending on the component you
chose to embed.

278 Lotus Notes Release 4.5: A Developer’s Handbook

5. Add the LotusScript code for the event into the programmer’s pane. For
example, suppose we had embedded a Lotus Comment component into
our form. On the click event we can pop up a message box that tells us
that the mouse has been clicked:

Sub Click(Source as Ltscomment)
 MessageBox "Mouse Button Clicked"
End Sub

6. Save the form.

7. Test your form by creating a new document and clicking on the
component. You should receive a messagebox with the text “Mouse
Button Clicked.”

Notice that in the above example, a handle to the component is
automatically passed to Notes, in this case Source as Ltscomment. This can be
different for each of the components you are using and the events you are
coding for. For example, in the spreadsheet component if you trap the Click
event you are passed a handle to the object, the row and the column.

Using the Lotus Components Template Builder
The Lotus Components Template Builder enables you to create and
distribute your own Lotus Components, based on the existing components
you have installed.

An example of these customized components may be a company expense
form, where you take the spreadsheet component, add your own text, color
and formulas and then package it as a new template that your employees
can add to their documents from the Components Palette.

Creating Your Own Component
In the following example we will create a company expense form.

1. To access the Template Builder, select Template Builder from the Lotus
Components Palette. The Lotus Component Template Builder program
is displayed.

Chapter 11: Working With Lotus Components 279

Select File-New Template from the menu. The New Template dialog
box is displayed.

From the list of available components select the one that you will use
as the base for your new component, in our case select the Lotus
Spreadsheet Component and click OK.

2. In the Template Builder window a blank spreadsheet is displayed. You
can now add text formatting and formulas to this spreadsheet to create
your expense sheet. Below is a simple expense form we created:

280 Lotus Notes Release 4.5: A Developer’s Handbook

3. Once you are happy with the layout of your template, select File-Save
from the menu. The Save-As-Template dialog box appears.

Type in a descriptive name for the new component. This is the name
that will appear in the Lotus Components Palette. Give the component
a LotusScript name. This is used when accessing the component
through LotusScript.

If you wish you can add a list of instructions that can be displayed to
the user when they insert the component into a document.

4. Click OK to save the new component.

Creating a Distribution Pack
In order for your users to be able to use the new component, they must
have the component installed on their workstation.

To help you with this task, the Lotus Component Template Builder comes
with a tool called the Distribution Pack. This tool will create a self
extracting installation program that will install the component on the users
workstation, add the component into the Windows registry and display the
component on the Notes Create-Object menu.

Chapter 11: Working With Lotus Components 281

To create a distribution pack for our expense sheet, follow these steps.

1. Select File - Create Distribution Pack from the menu.

2. Select the templates that you wish to include in the distribution pack,
(you can add more than one) and click OK.

3. The distribution pack is created and an informational dialog box
appears.

4. You can now send this EXE file to those users that you wish to install
the new component. After a user has installed the new component they
must add it to their own Components Palette by selecting Customize
Palette from the Lotus Components Palette.

5. The Customize Component Palette contains two lists. The first is a list
of all available components and the second is a list of components that
appear on the Lotus Components Palette. To make our new template
available we need to simply drag the entry from the top list into the
second.

282 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 12
Notes Applications and Security

This chapter will introduce Lotus Notes security from an application
developer’s viewpoint. The chapter is not intended to be an in-depth
look at the full range of Notes security features, rather to provide the
Notes application developer with the information they require to create
secure applications.

In the chapter we will cover two areas:

Access Control Lists (ACL) and Execution Control Lists (ECL)

Security features within various design elements.

Access Control List
At the heart of every Notes database’s security lies the Access Control List,
commonly referred to as the ACL. This list contains information on the
users and groups that can have access to the database, and the level these
people are allowed to access at.

With Notes Release 4.5 there are seven main levels of access that a database
administrator can assign to a person or group and eight sublevels below
each of these.

283

Access Level Description

Manager Users with Manager access can modify ACL settings, encrypt a
database for local security, modify replication settings, delete a
database and perform tasks permitted by no other access level.
Managers can also perform all tasks allowed by other access levels.
Notes requires each database to have at least one Manager. It’s best
to assign two people Manager access to a database in case one
manager is absent.

Designer Users with Designer access can modify all database design
elements (fields, forms, views, public agents, the database icon,
Using This Database document and About This Database
document), can modify replication formulas, and can create a full
text index. Designers can also perform all tasks allowed by lower
access levels. Assign Designer access to the original designer of a
database or to a user responsible for updating the design after a
database is in use.

Editor Users assigned Editor access can create documents and edit all
documents, including those created by others. Assign Editor
access, for example, to a user responsible for maintaining all data
in a database.

Author Users assigned Author access can create documents and edit
documents they create. Assign Author access to allow users to
contribute to a database but not edit documents created by others.
When possible, use Author access rather than Editor access to
reduce Replication or Save Conflicts.

Reader Users assigned Reader access can read documents in a database
but cannot create or edit documents. For example, assign Reader
access to users who must be able to read the contents of a reference
database such as a company policies database. Anyone with at
least Reader access to a database can create personal agents in the
database if the database manager selects the ACL option “Create
personal agents.” However, users can only run agents that
perform tasks allowed by their access levels. For example,
someone with Reader access can create a private agent that deletes
documents, but the agent won’t delete documents when the user
runs it.

Depositor Users assigned Depositor access can create documents but can’t
see any documents in the database views, even the documents they
create. For example, assign Depositor access to allow users to
contribute to a mail-in database or to a database used as a ballot
box.

No Access Users assigned No Access cannot access the database. For
example, assign No Access as the default access to prevent most
users from accessing a confidential database.

284 Lotus Notes Release 4.5: A Developer’s Handbook

As well as adding people or groups to a database ACL and assigning them
an access level, you can also fine-tune their access by selecting or
de-selecting certain sub-access options. Below is a table of these sub-levels.

Access Option Description

Create
Documents

Select this option to allow Authors to create documents. Managers,
Designers, Editors, and Depositors are permanently assigned this
access. You normally select this option for all users with Author
access; you may want to deselect this option after a period of time
to prevent Authors from adding any more documents but to allow
them to read and edit ones they’ve already created. By default, the
Create documents option is not selected for new Authors that you
add to the access control list.

Delete
Documents

Select this option to allow Managers, Designers, Editors, or
Authors to delete documents. Authors can delete only documents
that they created or if the document contains an Author Names
field, they can delete documents if their name or a group or role
that contains their name appears in the Author Names field.

Create
Personal
Agents

Select this option to allow Designers, Editors, Authors, or Readers
to create personal agents. Managers are permanently assigned this
access. Since personal agents on server databases take up server
disk space and processing time, you may want to deselect this
option to prevent some users from creating them. Note A Notes
administrator can use the Agent Manager Restrictions section of a
server document to prevent people from running personal agents
on a server; people denied this server access can’t create personal
agents on the server, regardless of the ACL setting.

Create
Personal
Folders/Views

Select this option to allow Editors, Authors, or Readers to create
personal folders and views in a database on a server. Managers
and Designers are permanently given this access. Personal folders
and views created on a server are more secure and available on
multiple servers. Also, administrative agents can operate only on
folders and views stored on a server. If this option is not selected,
users can still create personal folders and views but the views and
folders are stored on their local workstations. Deselect this option
to save disk space on a server.

Create Shared
Folders/Views

Select this option to allow Editors to create shared folders and
views. Managers and Designers are permanently assigned this
access. Deny this access to save disk space on a server and to
maintain tighter control over database design.

continued

Chapter 12: Notes Applications and Security 285

Access Option Description

Create
LotusScript
Agents

Select this option to allow Readers, Authors, Editors or Designers
to create LotusScript agents. Managers are permanently assigned
this access. Since LotusScript agents on server databases have the
potential to take up significant server processing time, you may
want to restrict which users can create them. Note: A Notes
administrator can use the Agent Manager Restrictions section of a
Server document in the Public Address Book to prevent people
from running restricted and/or unrestricted LotusScript agents on
a server. If you select “Create LotusScript Agents” for a name in
the ACL, a Server document can nevertheless prevent people
assigned this access from creating LotusScript agents.

Read Public
Documents

This option is to support the Calendaring and Scheduling
delegation function. It enables an application developer to assign
reader access to a database without giving the user the full Reader
Role. A Notes application designer can add a $PublicAccess field
to a document. When this field is in the document, it means that
the document can be read by any user with Public Reader access
and can be modified by anyone who has Public Writer access. A
Notes application designer can check the [x] Available to Public
access users checkbox on the Forms and Views Properties
InfoBoxes to allow the object to be visible and usable by public
access users.

Write Public
Documents

See Read Public Documents above.

Note Some of these options are disabled depending on the level of access
you have given a person. For example, if you give someone Manager access
you will not be able to remove their ability to create documents.

Roles
Roles are very much back in fashion with Notes Release 4.5, having taken
a back seat in earlier releases. A role is a tool by which an application
developer can define a subset of users, servers or both to provide access to
specific database components. A database manager first creates a role and a
designer then selects the role for inclusion in an access list for a specific
database component.

By creating roles within a database ACL and assigning people or groups to
it, a Notes developer can restrict or allow access to certain parts of the
database or some functionality within the database depending on the
current role of the user.

Roles can be thought of as the same as a group within the Name & Address
Book, but created and stored at a database level.

286 Lotus Notes Release 4.5: A Developer’s Handbook

Working With Roles
To assign people to a role, you must first create the role in the ACL for the
database. To create a role, follow these steps:

1. Select File-Database-Access Control from menu. The Access Control
List dialog box is displayed.

2. Click on the Roles icon to the left-hand side of the dialog box.

3. To add a new role, click the Add button, type in the name of your new
role and click OK.

4. To assign this role to a person, click the Basics icon to the left of the
dialog box.

5. Select the person or group with the mouse and click the corresponding
role in the Roles list in the bottom right of the dialog box. A check mark
should appear next to the role meaning that this person now belongs to
this role.

Using @Functions in Roles
When creating applications, the application developer can use the
@UserRoles() and @IsMember functions to determine whether the current
user is a member of a particular role.

For example, when creating applications that are to be published over the
Internet, the Notes HTTP server will define people that are using the
database from a Web client in the $$WebClient role. You can then easily
determine whether to display an HTML formatted document to the user or
a Notes document with a formula like this:

@IsMember(“$$WebClient”;@UserRoles);

This formula returns True if the person currently logged on is a member of
the $$WebClient role.

Chapter 12: Notes Applications and Security 287

Execution Control Lists

Execution Control Lists (ECL) have stemmed from the concern that a Notes
user does not have much control over what a Notes application is doing to
their document, database or system.

ECLs are a means by which the Notes user can now specify what level of
access an executing formula or LotusScript program created by another
person can have to their system.

By default, no scripts or formulas, whether signed or unsigned, can execute
on your workstation without displaying a warning message.

ECLs are stored on a user’s workstation. To work with ECLs select
File - Tools - User Preferences menu. Clicking on the button marked
Security Options. The Workstation Security: Execution Control List dialog
box is displayed.

The dialog is split into two areas. These are the developers signatures and
the levels of access that documents signed by these developers can perform
on your workstation.

For example, suppose you are trying to create a document from a design
that has been signed by the person Dave Morrison/CAM/Lotus. You have
specified in your ECL list that you do not want to give this person access to
your environment variables.

288 Lotus Notes Release 4.5: A Developer’s Handbook

When you open up the document and the program tries to perform an
@Environment command, a dialog box will appear telling you that the
system is trying to access an environment variable when it does not have
the authority to do so. If you want to allow the command to continue you
can do so. You can either allow it to run this one time only, or you have the
ability to change the ECL permanently to give Dave Morrison/CAM/Lotus the
ability to access any of your environment variables in the future.

A complete list of LotusScript and @Functions that are affected by the ECL
can be found in the Notes Help database.

Note By default every template that comes from Lotus is signed by Lotus
Notes Template Development which is given full access to your system.

Document Level Security
After a user has been given access to a database, it does not necessarily
mean that they have access to all the documents within that database.

The first level of security you can implement is at a document level by
adding a reader names field to a form.

This special field contains a list of all the people or groups that may read
this specific document, no matter what level of access they have been given
in the database ACL.

To create a reader field for a form, complete the following steps:

1. Open your form in design mode.
2. Create a new field by selecting Create-Field from the menu.
3. Change the field type to Readers.
4. If you wish the users to be able to add their own list of people to the

group, select editable, or provide a formula that will create a list of
names automatically.

Chapter 12: Notes Applications and Security 289

The same follows for users that you want to be able to create documents
with a form. Instead of selecting Readers as the field type, select Authors.

A default list of readers and authors can also be created through the forms
InfoBox. On the security tab there are two fields that you can add names to
for read and create authority with this form. By default, all people with
reader or create access to the database in the ACL have access.

Section Level Security

Sections are areas of a document that can be collapsed into a single line.
They make navigation in large documents easier as readers can expand
a section when they want to read its contents.

Sections can either be Standard or Controlled Access. Controlled Access
sections have an Editors List defined either by the application developer at
the form level, or by the user at document creation time.

The Editors List in a section gives access to only those people specified the
ability to edit fields within that section.

Field Level Security

If document security is essential, you can create an encryption key that will
be used to encrypt the contents of all fields marked as encryptable through
the Options tab on the field InfoBox.

Creating an Encryption Key
To create an encryption key you need to do the following:

1. Choose File - Tools - User ID from the menu bar.

2. Click the Encryption icon on the left-hand side of the dialog box.

3. Click the Add button, the Add Encryption Key dialog box is displayed.

4. Type in a name and a comment for this key.

5. If the key is to be used by people outside North America select the
International option button.

6. Click OK.

290 Lotus Notes Release 4.5: A Developer’s Handbook

Sending the Encryption Key to Other Users
As encryption keys are stored in your ID file, if you want other people to be
able to view documents that have been encrypted with this key you must
send them a copy of the key first. The easiest way to do this is to select the
Mail button from the User ID dialog box. Once the key has been received
by the intended user they can merge it into their ID file by choosing
Actions - Accept Encryption Key from the menu bar.

Encrypting the Field Contents
Once you have created an encryption key it can be used to encrypt the
contents of fields within a document so that others cannot view them.

To enable encryption on a form perform the following:

1. Open the form in design mode.

2. Select Design - Form properties from the menu to display the Form
InfoBox.

3. Click the security tab with the key icon.

4. Click on the field marked Default encryption keys. A list of the
available encryption keys will appear.

Note If you have not created any keys, this field will be blank.

5. Select the key you wish to use. A check mark appears next to the key
name.

Chapter 12: Notes Applications and Security 291

Having set a default key to use with the form, you must now specify which
fields are to be encrypted. To do this, perform the following:

6. Open the form in design mode.

7. Either create a new field by choosing Create - Field from the menu or
click on an existing field and choose Design - Field Properties from
the menu.

8. Click the Options tab on the Field InfoBox.

9. Select Enable Encryption for this field at the bottom of the InfoBox.

When a user now creates a document using this form, the encrypted field
you just created will be marked by two red marks at the top left and bottom
right of the field. When the form is saved, the encryption key that was
specified in the form properties is used to encrypt the contents of this field.

When someone who does not have the correct encryption key opens the
document, the field and its contents are hidden.

292 Lotus Notes Release 4.5: A Developer’s Handbook

Part 2
Extending the Reach

Introduction

The second part of this book is dedicated to tools and techniques that
enable you to seamlessly integrate an existing IT infrastructure into your
Notes applications. As such, the construction of net-aware Notes
applications and the integration of external databases play a major role in
this second part.

Internet and Intranet Integration
Domino, the integrated Notes/HTTP server, extends the power of your
existing Notes applications by publishing them on-the-fly. Domino enables
any Web client to participate in Notes applications securely, which enables
you to automatically capture and manage information from Web browser
users within or outside your company. Hence, your existing Notes
applications will become net applications that interact with front-end user
interfaces other than the Notes workstation.

The integrated Notes Web server will truly extend the reach of your
applications to employees, partners, suppliers and customers over Intranets
and the Internet. Even in this environment, it offers you multiple levels of
secure access and built-in database integration.

Database Integration
Lotus Notes differs significantly from the design of traditional relational
database management systems (DBMS). DBMSs focus on the point-in-time
capture of structured data and basic business transactions; Notes focuses on
distributed capture of semi-structured data through compound documents.
While the systems may seem to be incompatible, Lotus Notes is unique in
its ability to complement DBMS applications in such a way that both system
types draw upon and reinforce one another’s strengths.

A variety of integration techniques and products are available that allow
you to leverage the power of both environments, making Lotus Notes a
central access point for all of your enterprise database, network, and
Internet resources. In this second part of the document we discuss the
integration options that exploit the respective strengths of Notes and
traditional DBMSs and transaction systems. They include:

Native Notes access to DBMSs (LotusScript Data Object, @DB
functions)

Access to Notes databases from DBMSs and query tools (NotesSQL)

295

Server-to-server high-volume data transfer (Lotus NotesPump)

Links to transaction systems (IBM MQSeries link for Lotus Notes)

Each of the available tools for Notes/DBMS Integration has strengths in the
areas in which they were designed to excel. These strengths are
summarized in the following table:

LS:DO NotesSQL NotesPump MQ Series Link
for Lotus Notes

Data Source(s) All ODBC-
compliant data
sources

All ODBC-
compliant data
sources

DB2, Oracle,
Sybase, plus
ODBC-
compliant data
sources

18 host systems
via MQSeries
systems, e.g.,
IMS, AS/400,
DEC VMS, CICS

Read & Write? Yes Yes Yes Yes

Data volatility? High High Low High

Response time? Real-time or
batch

Real-time Batch and
event

Real-time and
asynchronous

Programming
involved?

Yes Depends on
application
used

Not required;
available

Yes

Volume of data
transfer?

Moderate Moderate High Moderate

Notes
client/server
support?

Client and
Server

Client and
Server

Server Client and
Server

296 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 13
Domino: Architecture and Configuration

Overview

This chapter describes the Domino technology in Lotus Notes based on
Domino 1.5. The Domino architecture is introduced and its elements are
discussed.

The main areas covered in this chapter are:

The Internet and the World Wide Web

Lotus Notes and the Web

Domino Architecture

Configuring the Domino Web server

Accessing a Domino site.

The Internet and the World Wide Web: An Introduction
The Internet is a worldwide collection of computers organized into a series
of networks. This wide-area network (WAN) collection of networks
includes the ARPANet, NSFnet, regional networks, local networks at
universities and research institutions, and a number of military networks.
The term “Internet” refers to this entire set of networks.

It evolved from developments in the scientific and defense community,
where there was a need for scientists to share and collaborate on research
projects. This requirement led to a government funded network of these
scientific networks and computers connected through the TCP/IP protocol
which became known as the Internet. The Internet provides the following
main functions:

Correspondence through electronic mail through the Simple Mail
Transfer Protocol (SMTP)

Information discussion and sharing through USENET Newsgroups
using NNTP

297

File transfer enabled by the File Transfer Protocol (FTP)

Terminal Emulation and remote login through Telnet

Compound Document Publishing through the World Wide Web
(WWW) and Hypertext Transfer Protocol (HTTP)

Although the Internet has been around for almost two decades, it is only in
the mid 1990’s that its use has become widespread. This is primarily
because through commercialization of the Web, more funding has allowed
better network bandwidth and overall Web content.

The number of people using the Internet grows daily with current 1996
estimates at between 40 to 60 million. The Internet population is growing
exponentially as business tries to use this electronic venue as the new way
to market its products and services.

The World Wide Web
Clearly the World Wide Web provides the most functionality of all the
Internet services.

Its main strength is the ability to present documents, with text, graphics,
audio, video, hypertext links to other documents, and other compound
multimedia content to any Web user worldwide. These documents are
commonly called Web pages and are presented to Web users through HTTP
over the Internet’s transport protocol TCP/IP. These Web pages are written
in HTML code which describes the information and the presentation
delivery of the documents. They are accessed by way of reference through a
Universal Resource Locator (URL) that is requested through an HTTP
command.

Browsers
Programs that allow users to quickly and easily interface with Web
documents are called browsers. They provide a graphical user interface to
display Web documents and make HTTP requests.

Companies are not only advertising their products and services on the Web,
but creating applications that are key to their business processes.
Information, products, and services can now be procured through the Web
and the process by which this is done is increasingly an electronic one.

A Web page has the possibility to be more than static text. The Domino
Web server technology for Lotus Notes enables you to bring all these
functions to your Web applications.

298 Lotus Notes Release 4.5: A Developer’s Handbook

There is another benefit to the use of the Internet and Web. You can use its
connectivity and bandwidth to connect your different offices, people and
customers by building loosely coupled business environments and
applications that are connected through the Internet or your own private
network. These applications are called intranets and they can range from
publishing information between company locations to more sophisticated
corporate and departmental applications that support business processes
over the Internet’s network and between possibly disparate technologies.

This requires adding functionality to the Web to allow transaction-oriented
applications, workflow, mobile use, and collaboration all through secure,
private Web experiences.

Lotus Notes technology is proven in the workgroup environment with
thousands of companies using it for key business applications. The Web is
another environment where Notes can bring its functionality to bear greater
benefits for customers.

Chapter 13: Domino: Architecture and Configuration 299

Internet and Web Terminology
Before we begin to discuss Domino, there are a number of terms you need
to understand. The following terms will be discussed at more length in this
chapter.

HTML Hypertext Markup Language; the document format for the Web.

WWW World Wide Web

HTTP Hypertext Transfer Protocol is the standard Internet protocol that enables
Web clients to talk to Web servers.

URL Uniform Resource Locator designates the unique location of a site/page.

CGI Common Gateway Interface

NNTP Network News Transfer Protocol is the protocol used by UseNet
newsgroups.

SMTP Simple Mail Transfer Protocol is a protocol used to send text-based
E-Mail.

MIME Multi-Media Internet Mail Extensions are an enhancement to the SMTP
protocol that enables the transfer of binary files.

Lotus Notes and the Web

Lotus Notes is ideally suited for Web and intranet environments. With the
Domino technology, it goes beyond today’s HTTP server to bring the Web a
rich set of proven functions from the Lotus Notes workgroup world.

Domino is server technology that transforms Lotus Notes into an Internet
applications server. It combines the open networking environment of
Internet standards and protocols with the powerful application
development facilities of Lotus Notes, enabling you to develop a broad
range of business applications for the Internet and intranet.

Beyond static information dissemination and browsing, Notes has robust
and industry-leading technology in:

Programmable object services

Information push and pull replication

Messaging/directory services

Database integration

Transaction system integration

Security and RSA authentication

Workflow, tracking, collaboration, and conferencing

300 Lotus Notes Release 4.5: A Developer’s Handbook

Search engines

Document management and linking

Scripting and agent support

Network and mobile support

Administration

HTTP, HTML, CGI, and Java support

About the Lotus Notes Client Web Navigator Feature
The Web navigator is a feature of Notes that provides Notes users with
easy access to information on the Internet. The Web navigator combines the
features of a Web browser with all the groupware capabilities of Notes to
allow Notes users the ability to access information on the Internet from the
familiar surroundings of their Notes environment.

With Notes and the Web navigator, you can:

Browse the Web on your own using the client-side retrieval capabilities
of the Personal Web navigator

Browse the Web with others using the server-based retrieval
capabilities of the Server Web navigator (without having to install and
configure TCP/IP on each user’s workstation)

Browse through previously-retrieved Web pages while disconnected
from the Internet

Save Web pages in any Notes database for future reference

Clustering
Replication
DB encryption
ECL
RSA authentication Local HTTP

Agents
Local Obj store
Mobile

Java Java
CGI
POP3/IMAP4
SMTP
SSLSections

Actions
Server ACL
DB access cntl
Roles

Java
CGI
POP3/IMAP4
SMTP
SSL

Actions
Server ACL
DB access cntl
Roles

Lotus Notes Server
with Domino

Lotus Notes Client
Release 4.5

Chapter 13: Domino: Architecture and Configuration 301

Share Web pages with coworkers in a shared database

Capture Web pages within any Notes application, such as a Customer
Tracking or Competitor Watch database

Program Web access and navigation features into any Notes application

Rate, annotate, and categorize Web pages

Use the built-in intelligent agents to locate and return Web pages of
interest to the user, or create your own customized agents

Access active Web pages (pages that contain Java applets, plug-ins, and
helper applications)

Create a customized browser application

Browse the Web and save your browsing experience as a Web Tour that
can be reloaded at a later time

Gain one-click access to a preferred search site.

About the Domino Architecture

Domino is a Lotus Notes server task. It enables a Lotus Notes server to
become an HTTP server. Domino can be thought of as:

A Web server

A Web application development environment

An enabler of an alternate client for Notes: the Web client.

Domino integrates the open networking environment of Internet standards
and protocols and the powerful application development facilities of Notes.
This environment provides you with the ability to rapidly develop a broad
range of business applications for the Internet and the intranet.

The Domino Web server merges Web server technology with Notes
technology to allow any Web browser to access data and applications
stored in Notes databases. Web site designers can use Domino to build
applications that take advantage of core Notes functionality, such as
replication, full-text search, application development, security, and
workflow.

Domino is a Web server providing logging, configuration, and security
management features as well as on-the-fly, dynamic integration of Notes
and Web environments. It speaks the HTTP protocol, converting HTML
code on the fly, thus enabling Web clients to communicate with Notes
servers and service the requests. Through a URL interface, Domino
examines incoming HTTP requests and responds in one of two ways:

302 Lotus Notes Release 4.5: A Developer’s Handbook

If the request is for an HTML file in the file system, Domino acts
like an HTTP server displaying HTML documents.

If the request is for a Notes database element, the Domino
engine interacts with the Notes database to retrieve the
appropriate information to return to the requesting HTTP
process or save information in the database.

Notes views, forms, navigators, and links are translated into HTML on
the fly for display on any Web client. This allows you to instantly take
your Notes applications and serve them over Domino. Domino basically
exposes Notes design elements as an extension of the URL interface by
attaching the Notes element and a command on the end of the HTTP
service request to access the Notes element. For example:

http://www.millenia.com/domino.nsf?OpenDatabase

See the URL Syntax section in this chapter for more details.

Configuring the Domino Web Server

Configuring the Domino Web server involves the following main areas:

Setting Up Your Notes Server on the Internet

System Requirements
Domino has the same system requirements as your Notes server.
The Domino files do not occupy much disk space; the hardware
requirements include disk space allocated for the file cache and log files.
For example, on NT:

NT Server 3.51

1 gigabyte disk drive

64MB of RAM

Network Requirements
The PC on which you install Domino should have the following network
connectivity:

A connection to a company LAN or intranet that uses TCP/IP as a
protocol

TCP/IP on the Notes server where the Domino software resides

Domino supports the following TCP/IP implementations:

Windows NT serverTM — TCP/IP that comes with the Windows NT
software

Chapter 13: Domino: Architecture and Configuration 303

If you plan to use Domino to manage an external Web site, you’ll need:

An Internet connection through a leased-line or dial-up connection to
an Internet Service Provider (ISP).

Connecting to the Internet raises potential security risks. Create and
maintain a secure environment by installing a firewall or creating separate
internal and external networks.

HTTP Setup
Configuration settings for the Domino Web Server are stored in the HTTP
Server settings section of the Server document in your server’s Name and
Address Book.

TCP/IP port number (default=80)
Specify the port number on which you want the Domino server to listen for
HTTP requests. The industry standard port number for HTTP is 80.
Common ports used are 8080 and 8008.

Note Do not use port numbers less than 1024 (except for the default of
80), which are reserved for other TCP/IP applications.

TCP/IP port status (default=Enabled)
Specify the status of the TCP/IP port. Either the TCP/IP port or the SSL
port must be enabled for Domino to operate.

304 Lotus Notes Release 4.5: A Developer’s Handbook

Host name (default=blank)
Enter the fully qualified host name that is returned to the browser. If your
PC does not have a host name registered in a DNS, enter the PC’s IP
address in this field.

DNS Lookup (default=Disabled)
Specify whether you want the Domino server to look up the DNS host
name of the requesting client.

Tip If you enable DNS, your server works harder to perform host name
lookups. This also causes storage of long host names for log file and log
filter entries.

Home URL (default=/?Open)
Specify the URL you want Domino to return when users enter a site name
directly, but do not specify an explicit directory or page name (for example,
http://domino.lotus.com).

Using the default setting, /?Open, Domino displays a list of databases on
the server. This is equivalent to the File - Database - Open command in
Notes. To have Domino look for and return the Welcome page in the HTML
directory, leave this field blank or specify /default.htm.

Specifying a URL that begins with a / (slash) causes Domino to return the
URL information directly to the browser. The browser still displays
http://hostname.domain.com/ in the location text box.

Specifying URLs that start with a protocol such as
http://host.domain.com/ causes Domino to send a redirected URL to the
browser. That is, the browser performs an HTTP GET request on the
specified URL. The information in the browser’s location text box then
changes to what is specified in this field.

Examples: /domino.nsf

/dominodisc.nsf/By+Author
/dominodisc.nsf/$defaultnav
http://myhost.domain.com/home/myhome.html

Welcome page (default=default.htm)
Specify the default page file name you want the Domino server to load
when a client accesses a directory not followed by an explicit page name.

Maximum active threads (default=40)
Specify the maximum number of threads you want to have active at one
time. If the maximum is reached, the Domino server holds new requests
until another request finishes and threads become available. The more

Chapter 13: Domino: Architecture and Configuration 305

power your PC has, the higher value you should use. If your PC spends too
much time on overhead tasks, such as swapping memory, reduce this
value.

Minimum active threads (default=20)
Specify the minimum number of threads you want the Domino server to
use or have available to use. The Domino server will not close threads
below this minimum even if the threads are idle. The more power your
machine has, the higher value you should use. If your PC spends
too much time on overhead tasks, such as swapping memory, reduce
this value.

SSL port number (default=443)
Specify the port for SSL security. The Domino server uses this port only for
HTTP requests. Requests for HTTP will still come on the port that you set
with the TCP/IP port. If you change this setting, you must stop the Domino
server and restart it so the changes take effect.

SSL port status (default=Enabled)
Specify the status of the SSL port. Either the SSL port or the TCP/IP port
must be enabled for Domino to operate.

SSL key file (default=keyfile.kyr)
Specify the name for the key file. If you change this setting, you must stop
the Domino server and restart it so the changes take effect. The key file is
stored in the Notes data directory by default. To store the key file in a
different directory, specify a full path.

Mapping settings
The mapping settings are stored in the HTTP Server settings section of the
Server document in your server Name and Address Book and direct
Domino where to look for each of its component files.

306 Lotus Notes Release 4.5: A Developer’s Handbook

HTML directory (default=domino\html)
Specify the directory location for HTML files. The directory is relative to the
Notes data directory unless a full path is specified.

CGI URL path (default= /cgi-bin)
Specify the URL path to the CGI programs directory. Note that this path
relates to URLs and not the file system.

CGI directory (default=domino\cgi-bin)
Specify the directory location for CGI program files. The directory is
relative to the Notes data directory unless a full path is specified.

Icon URL path (default=/icons)
Specify the URL path to the Domino icons directory. Note that this path
relates to URLs and not the file system. In general, you do not need to
modify the icons fields. However, if you have an existing icons directory,
specify the path to the directory here.

Icons directory (default=domino\icons)
Specify the directory location for the icons directory. The directory is
relative to the Notes data directory unless a full path is specified.

Operation Information Settings
Operational information settings stored in the HTTP Server settings section
of the Server document in your server Name and Address Book.

Cache directory (default=domino\cache)
Specify the directory for the Domino server to use as a cache. Domino uses
this directory to store graphic images stored as GIF files and file
attachments.

Maximum cache size (default=50 MB)
Specify the maximum amount of available disk space, in megabytes (MB),
you want the cache to use.

Delete cache on shutdown (default=Disabled)
Specify whether you want Domino to delete the cache when you shut down
the server.

Garbage collection (default=Enabled)
If you have enabled caching, the Domino server uses the garbage collection
process to delete files that should no longer be cached from the least to the
most frequently accessed, which means that the most frequently accessed
files are the last files Domino deletes.

Garbage collection interval (default=60 minutes)
Specify a time interval, in minutes, at which to run the garbage collection
process.

Chapter 13: Domino: Architecture and Configuration 307

Image conversion format (default=GIF)
Specify the image file format you want Domino to use when converting
image files. The options are GIF and JPEG.

Interlaced rendering (default=Enabled)
If you chose GIF as the image conversion format, specify whether or not
you want Domino to render the GIF images in an interlaced format.

Progressive rendering (default=Enabled)
If you chose JPEG as the image conversion format, specify whether or not
you want Domino to render the JPEG images in a progressive format.

JPEG image quality (default=75)
If you chose JPEG as the image conversion format, specify the percentage
numeric value for the JPEG image quality. The range is 5 to 100 percent.
The larger the value, the larger the file, and the better the image quality.
The lower the value, the smaller the file, the less time it takes to transmit,
and the lower the image quality.

Default lines per view (default=30)
Specify the default number of lines Domino uses to display a Notes view.
Note that this setting affects every database on the Domino server.

Logging settings
Domino creates an access log and an error log. Both of these are specified in
the Logging section of the server document. The files created are relative to
the Notes Data directory with a timestamp suffix. A log filter can help you
decrease the size of your log files.

Access log (default=blank)
Specify the path and/or the file name where you want the Domino server to
log access statistics.

Error log (default=blank)
Specify the path and the file name where you want the Domino server to
log internal errors. Note that the path is relative to the Notes data directory.

Time stamp (default=LocalTime)
Specify whether the log files should record entries using local time or
Greenwich Mean Time (GMT).

308 Lotus Notes Release 4.5: A Developer’s Handbook

Log filter (default=blank)
Use this option to specify host names or domains whose access requests
you do not want to log. You may want to suppress log entries for certain
hosts or domains. Specify the IP number or host name template in this field.

Examples: NoLog template

NoLog 128.141.*.*
NoLog *.cern.ch
NoLog *.ch *.fr *.it

To assign the same setting to template names, separate them by one or
more spaces.

Note To use host name templates, you must enable the DNS Lookup
setting. If the DNS Lookup option is disabled, you can use IP address
templates only.

Example: www.internotes.lotus.com; www.lotus.com;
www.ibm.com

Registering Web Users
You must set up user authentication at the server by creating Person
documents and adding HTTP passwords for all Web users who are allowed
to access the Domino server and applications.

Creating a Person Document for a Web User
If you manually create Person documents for Web users in the Public
Address Book, the minimum information required is a user name in the
“User Name” field and a password in the HTTP Password field. When you
save the Person document, the HTTP password is encrypted.

A Registration Application
The Domino Web site, http://domino.lotus.com, has a sample registration
application available for you to download. The sample registration
application is described in the chapter on Domino sample applications.

Starting and Stopping the Web Server

Starting the Server Manually
1. Start the Notes server.

2. At the console, enter the command:

load http

Chapter 13: Domino: Architecture and Configuration 309

Starting the Server Automatically
To start Domino automatically whenever the Notes server starts, bring the
server down and do the following:

1. In the NOTES.INI file, add the http command to the line that begins with
ServerTasks=

2. Save the file and restart the server so the changes take effect.

Stopping the Server
To stop Domino, enter this command at the console:

tell http quit

Setting Up Security
Domino leverages the Notes access control model to control access to Web
applications built on it.

About Securing Access to Your Environment
The following features allow the Domino-enabled application to provide
superior secure access controls:

Basic Web user authentication through the Notes Name and Address
Book.

User registration management through a pre-built template.

Roles-based security.

HTTP request security by activating the Secure Sockets Layer (SSL).

Notes ACL security for individual databases and in finer granularity
for Notes elements like views, forms, or fields.

Directory browsing control set up in the Name and Address Book.

Note The Domino Web Server does not allow “passthru” to other Notes
servers. Web users are restricted to accessing databases only on the Domino
Web server.

About Domino User Authentication
Just as the Notes ID file is the foundation for security on a Notes server,
the Web user name and password provide the entrance to the Web site’s
databases and are used as the basis for determining what an individual can
accomplish at the site. The technique by which users are granted access to
the Domino Web server is known as basic Web authentication. This
established standard for Web security is based on a challenge/response
protocol.

Web users are only authenticated when they attempt to do something for
which access is restricted. For example, when users try to open a database
whose default access is No Access, they are challenged by the server to

310 Lotus Notes Release 4.5: A Developer’s Handbook

supply a valid name and password. Authentication succeeds if the user
name and password supplied match the appropriate fields in the Person
document of the Public Name and Address Book on the Domino Web
server.

Caution Basic Web authentication is not considered as secure as Notes
public key certificate-based authentication because it doesn’t require User
IDs to validate the client’s identity.

Opening Access to Anonymous Web U sers
Any unregistered Web user who tries to access a Domino Web server
without a valid user name and password is known by the name
“anonymous.” You need to decide what level of database access you want
anonymous users to have.

To make your databases widely available to unregistered Web users, create
an entry in each database’s Access Control List called “Anonymous” and
assign it the appropriate access such as Reader.

Caution If there is no entry for “Anonymous,” such users receive the
default access set in the database ACL.

Tip To protect the databases from unregistered Web users, create an entry
in each database’s Access Control List called “Anonymous” and grant it
“No Access.”

About Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a security protocol that provides
communications privacy and authentication over the Internet. The Domino
Web server can be configured to encrypt data as it passes between Web
clients and the server.

Benefits of SSL Transactions
Privacy – HTTP data is encrypted to and from clients, so privacy is
ensured during transactions.

Message validation – An encoded message digest accompanies data to
detect any message tampering.

Server authentication – The server’s digital signature accompanies
messages to assure the client that the server’s identity is authentic.

About Certification Authorities and Key Ring Files
SSL encryption uses the public/private RSA-based crypto system to encrypt
data. This system requires the server to hold a unique pair of
mathematically-related keys — a private key and a public key — that are
used to initiate SSL-encrypted transactions.

Chapter 13: Domino: Architecture and Configuration 311

Key ring files store the information needed for encrypted transactions: the
owner’s private and public key and one or more certificates. The encryption
process that occurs between the Domino Web server and a Web client is
based on the relationship between the key pairs and the certificates.

The link that allows a server and a client to communicate is a Certification
Authority (CA). Like a mutual friend, a CA vouches for the identity of a
server and client. A CA can be an external, commercial certifier, such as
VeriSignTM, or an internal certifier that you create at your company. When a
CA issues a certificate (known by VeriSign as a Digital IDSM) to a server or
client, it includes a trusted root key that contains its name and public key.
An SSL transaction is authenticated only if the client can verify the server’s
identity (because the server has a trusted root key from the same CA).

About Database Access Control Lists
Every database has an access control list (ACL) that defines who can access
a database and what tasks users can perform. Users or servers with Notes
IDs, or any registered Web users (those whose names and passwords are
stored in the Public Name and Address Book), can be listed in the ACL. The
manager of each database on the Domino Web server should define an
access control list (by choosing File - Database - Access Control) that
matches the confidentiality requirements for the information.

Registered Web users can be listed individually, or as members of groups
or roles. The most frequently used access levels for ACLs on an interactive
Web site are:

No Access Users assigned No Access cannot access the database.

Depositor Users assigned Depositor access can create documents but
can’t see any documents in the database views, even the documents
they create. This type of access is useful for survey responses or ballot
boxes.

Reader Users assigned Reader access can read documents in a
database but cannot create or edit documents.

Author Users assigned Author access can create documents and edit
documents they create.

Editor Users assigned Editor access can create documents and edit all
documents, including those created by others.

Designer Users assigned Designer access can create and modify design
elements within the database, create a full-text index, and can modify
replication formulas.

312 Lotus Notes Release 4.5: A Developer’s Handbook

Manager Users with Manager access can modify ACL settings and also
perform all tasks allowed by other access levels (these tasks must be
done from a Notes workstation). Notes requires at least one Manager
for a database, but it’s best to assign two people Manager access.

To further refine a user’s or group’s access level, you can allow or restrict
these specific tasks. For most databases, you should allow Web users to
create and delete documents. Other tasks, such as creating folders and
views and creating agents, do not apply to Web users. For further
explanations on ACL levels, please refer to the chapter on Security in
this book.

Common Web Application ACL Settings
High-security confidential database

Default No access

Anonymous No access

Authorized readers Reader

Contributors Author

Supervisors Editor

Medium-security project database

Default Reader

Anonymous No access

Project team members Editor

Low-security informational database

Default Reader

Anonymous Reader

Contributors Author

Supervisors Editor

Low-security discussion database

Default Author

Anonymous Author

Supervisors Editor

Securing Notes Design Elements
You can apply security features into views, forms, and fields to further
refine who can see or change specific information on the Web site.

By placing an Anonymous entry in the ACL with “No access,” you cause
Domino to prompt for the user name and password of the Web user. When
logged in, the user has the rights applied to the specific design elements.

Chapter 13: Domino: Architecture and Configuration 313

Customizing views and folders
Read and edit access control lists (chosen from the Security tab of the View
Properties InfoBox) can be useful for organizing information for specific
types of users.

Note @UserName does not work in view selection and view column
formulas as they are not computed dynamically by the indexer.

Customizing Document-Level Security
A document can restrict which users can read its contents, even those with
Reader access to the database. Reader restrictions can be applied to a
document in any of these ways:

Form’s read access list (in the Security tab of the form properties
InfoBox)

Readers listed in a Reader Names field on the form

Documents read access list created by the author or editor in the
document properties InfoBox

Create access lists associated with a form restrict which Web users can
open documents created with a certain form.

Customizing Field-Level Security
Author fields expand the list of authorized editors for specific
documents. An Author’s field allows you to expand a document’s
editing privileges to users who didn’t create the document, without
giving those users Editor access in the ACL.

Reader fields limit who can read specific documents. You can use this
feature to show different users different collections of documents, even
though they are actually using the same view to see them.

Editor-only fields include the field security option, “Must have at least
Editor access to use.” You can use this feature to restrict authors from
editing part of their own documents.

Caution Do not rely on encrypted fields if Web users are authorized to
read documents that contain encrypted fields. Field-level encryption does
not work for Web users.

Hide When Access
@UserName makes the Web user’s name available to Notes formulas.
“Hide-when” formulas can be used to hide portions of documents based on
the user name.

@UserRoles can be used to check whether the user is a Web client or a
Notes client and thereby hide portions based on the user role.

314 Lotus Notes Release 4.5: A Developer’s Handbook

Some More Details on Security With Domino
Local database encryption, mail encryption, document encryption, and
network transaction encryption are not functional over Domino. However,
SSL encryption is available.

Server access lists which control Notes server activities are not functional
over Domino.

ACL control in databases reached through directory pointer (.DIR) files is
not functional over Domino.

Access-controlled sections restricting access to sections within a document
do not work with databases on a Domino Web server.

Signatures normally available for collapsible sections and mail-enabled
documents are not functional.

Domino Log and Cache

About the Domino Log Files
Domino creates log files to log statistics on the use of the Domino server.
Domino starts a new log file each day at midnight if it is running.
Otherwise, the server starts a new log file the first time you start it on a
given day. When creating a file, Domino uses the file name you specify and
appends a date suffix. The date suffix is in the format mmmddyy, where
mmm is the first three letters of the month, dd is the day of the month, and
yy is the last two digits of the year. For example, agent_log.jul2196.

The Domino log files are:

Access Log
Domino logs access statistics in this file. By default, Domino writes an entry
to this log each time a client sends the server a request unless filtered
through the Domino filter. For example:

165.238.196.55 - - [21/Jul/1996:00:00:20 +0500]

"GET
/DomGuideApp.nsf/127a8ca2ba2b99bb85256362000651fc/57e48c81b1d
0d72b8525636300" 302 407

165.238.196.55 - - [21/Jul/1996:00:00:22 +0500]

"GET
/DomGuideApp.nsf/127a8ca2ba2b99bb85256362000651fc/11d19a41400
9926c8525636300" 200 1558

165.238.196.55 - - [21/Jul/1996:00:00:35 +0500]

Chapter 13: Domino: Architecture and Configuration 315

Agent Log
Domino logs the type of Web client accessing your site (for example,
Netscape, Mosaic, etc.). Here’s some sample data from an Agent log:

[21/Jul/1996:00:00:20 +0500] "Mozilla/2.0 (compatible; MSIE
3.0B; Windows 95)"
[21/Jul/1996:00:09:31 +0500] "NetCruiser/V2.1.1"
[21/Jul/1996:00:10:05 +0500] "Lotus-Notes/4.1 (OS/2 Server)"

Error Log
Domino logs errors to this file. Here is an example:

[21/Jul/1996:00:01:41 +0500] [OK] [host: 206.104.23.192
referer: http://domino.lotus.com/

domino.nsf/4432de3b22c1708785256316007db7a0/4262ad9ea85ecc998
525636c008029cf?OpenDocument]

/dominorel.nsf/6e8b6c6ac4e689e085256324006d4ddc/9271311eaf15d
5398525636300529e28

[21/Jul/1996:00:01:52 +0500] [OK] [host: 206.104.23.192
referer:

CGI Error Log
Domino writes standard error (stderr) from CGI programs to the CGI error
log. Domino creates the CGI error log file on the same path you specify for
the error log file and names the file cgi_error.

Referer Log
Domino logs the URLs that clients visited and that contained links to URLs
on this site. Here’s some sample data from a Referer log:

[21/Jul/1996:00:01:07 +0500]"http://domino.lotus.com/"

[21/Jul/1996:00:01:07 +0500]"http://domino.lotus.com/"

[21/Jul/1996:00:01:08 +0500]"http://domino.lotus.com/"

[21/Jul/1996:00:01:09
+0500]"http://domino.lotus.com/domdown.nsf/Software/37f67470d
4dd2b288525631c00732b16?Op"

[21/Jul/1996:00:01:11 +0500]"http://domino.lotus.com/"

316 Lotus Notes Release 4.5: A Developer’s Handbook

About the Domino File Cache
Domino uses a file cache directory to optimize response time. Domino
stores image files and file attachments in the file cache directory. Since
converting bitmap files to inline GIF files can take time, caching the
converted files on disk allows Domino to return inline images more quickly.
Similarly, file attachments are usually compressed in Notes; storing
attachments in the cache improves server responsiveness.

The Domino file cache directory is named domino\cache; its location is
relative to the Notes data directory.

The format of the cache file names is:

<note-unid>.<field-name>.<item-name>.<item-id>.<item-offset>.
<filetype>

For example, an inline graphic might be named:

8dbf0dbdd7c002d1852561a300722f42.Body.0.a8e.gif

Note The cache file format information is subject to change.

Accessing a Domino Site

Creating, Editing, and Deleting Documents From the Web

Creating Documents From the Web
When you access a Domino site and click a link to a form, Domino loads the
form “on-the-fly.” In other words, Domino calculates formulas the form
uses, such as author name, date/time created, date/time last modified, or
default values based on user name — before displaying the form to you.
When you submit the form, Domino creates a document in a Notes
database. Once the information is in Notes, you can run an agent, mail the
document, trigger a workflow process, and so on.

Editing Documents From the Web
To edit a document, open it, click the EDIT button, and make your changes.
Click the SUBMIT button to have Domino save the edited document in the
Notes database.

You can edit any document you wrote or, if your access level is
Editor or higher, you can edit other people’s documents provided the
@Command([EditDocument]) action has been put behind the appropriate
action bar button. For example, look at a question you didn’t write in the

Chapter 13: Domino: Architecture and Configuration 317

Domino Discussion on the Domino Web site; only the NEW and RESPOND
buttons are available. Look at a question for which you are the author; the
EDIT and DELETE buttons are available as shown below:

Deleting Documents From the Web
To delete a document, you must first open it because there is no concept of
a “selected document in a view” on the Web. You can delete any document
for which you are the author or editor.

Note Actions that depend on the document, such as edit, delete, or
respond, must be included as form actions.

Searching a Domino Site

Search Options Dialog Box
The Full Text Search dialog box lets you specify your search and how the
search results appear.

318 Lotus Notes Release 4.5: A Developer’s Handbook

Viewing Search Results on the Web
Search results appear as a list of hypertext links to documents. Domino
displays search results in the format of the view in which the search was
performed.

Along with the search results, Domino displays a search bar that allows you
to refine the current search or enter a new one.

Note Documents added to the database since the database’s full text index
was last updated will not be returned by the search.

Reading and Responding to Notes Mail
When your mail database resides on a Domino server, you can read and
send mail over the Internet, giving you access to a Notes Mail account from
a Web browser. Domino gives you the flexibility of choosing to use Notes
Mail from any workstation connected to the Internet or from any Web
browser. Even if you don’t have your Notes ID with you, you can read and
send mail by entering the URL for your mail database and supplying your
name and password. Certain commands that are available from a Notes
workstation cannot be converted for the Web. For example, there is no
“OK/Cancel” confirmation dialog; instead, mail is sent or deleted without a
confirmation dialog.

Be aware of the following issues when accessing mail from a Web client:

Even if your Domino Web server is set up for Secure Sockets Layer
(SSL) transactions that protect privacy and authenticate Web users, you
should know that SSL offers less security than the Notes ID security
system that is activated when accessing mail from a Notes workstation.

You cannot store mail in a local replica.

Send options are more limited than those available at a Notes
workstation (for example, the Forward option is not available).

Preparing to Access Notes Mail From a Web Client
Before you can use Notes Mail from a Web client, the Domino
administrator must:

Register you as a Web user in the Public Address Book

Create a replica of your mail database on the Domino server or add
Domino to the mail server

Chapter 13: Domino: Architecture and Configuration 319

Chapter 14
Domino: Creating Web Applications

Setting Up Your Web Site

This chapter builds on the content of the previous chapter and describes
how to use the Domino technology within Lotus Notes.

The main areas covered in this chapter are:

Introduction to Lotus Internet Applications
Web Site Organization
Web Application Design Elements
Adding HTML to Notes Elements
Creating Links

This chapter was written using Release 1.0 of the Domino server.

About Web Applications
Once your Domino server is set up, you can begin to design your
application elements for a system to be used over the Web. The main areas
to consider are the following:

Web Site Organization
Web Application Design Elements
Adding HTML to Notes Elements
Creating Links

With Domino, the Lotus Notes application development environment is
composed of the following rich functionality:

Delivery of dynamic content based on:
Time
User input
Hide When Formulas
User identity
Web or Notes client type

321

Collaborative applications such as threaded discussions.

RDBMS systems access.

Streamlined and automated business processes with workflow
applications.

Secure Web applications using Access Control Lists and roles for
granular Notes element access to:

Databases, Views, Documents, Forms, Fields

Directory services through the Notes Public Name Address Book
(NAB), for managing Web users as individuals or in user groups.

Basic Web Authentication.

Secure Sockets Layer (SSL) support for server authentication and
encryption of data in secured sessions.

Full CGI application support.

MIME type mapping of data and file objects stored on the server.

Java script in-line support.

Java applications can be referenced from any page on the Web site from
either the file system or the Notes object store. As a result, any Java
development environment can be used in conjunction with Domino.

Domino can be used in conjunction with streaming audio and video servers
to serve plug-ins like Shockwave.

Introduction to Lotus Internet Applications
Domino provides the platform for Lotus’ Internet Applications, which are
business solutions enabling the deployment of Internet and Intranet
technology in the organization.

These applications build on the strengths of the Domino environment — its
rapid application development environment, object services, robust
security, easily administered replication of data, and support for multiple
operating systems — to efficiently integrate legacy systems, provide the
platform for authoring and approval workflows required to create content,
and manage the interactive communications — the discussions, the surveys,
the transaction-processing applications — that make this new world of
standards-based communication so exciting.

Lotus’ Internet Applications create a maximum ’net presence with
minimum effort. The SiteCreator that comes with each Internet Application
is designed to provide a “0 to Web site” implementation path quickly and
effectively, without extraordinary efforts and cost. Yet the out-of-the-box
usefulness of the Internet Applications doesn’t imply any reduction in
Notes’ long-standing emphasis on end-user development.

322 Lotus Notes Release 4.5: A Developer’s Handbook

The Domino server and Lotus’ Internet Applications allow developers to
customize the applications. Domino adds Notes’ programmable workflow
and security, the replication model for supporting distributed authoring,
the built-in interactivity of a threaded discussion model, and the ability to
process intelligent forms and store the results as actionable fielded data in a
database, rather than just as text.

Because organizations can develop applications that reach both the Notes
client and the Web browser, they gain the freedom to choose the best
delivery solution for the applications and the audience.

Domino.Action
The starting point for any organization is the establishment of an electronic
presence on the Web.

To accomplish this, Domino.Action will bundle additional software and
tools, including:

SiteCreator, for selecting and configuring the key elements of the site:
home page; about-the-company; press release library; job postings;
customer feedback; policies and procedures manuals; discussions;
visitor registration.

Editorial production tools: RTF- and ASCII-to-Notes/HTML
translation, a version of the tools used by publishers on
Notes:Newsstand.

Command and control for the ’net. The Domino environment for
application development provides a firm but flexible structure for
electronic publishing that solves an enormous problem of creating
content on the ’net: At last, the design of an electronic publication on a
Web site can be separated from the creation and management of its
contents. Domino.Action supports the design of content applications
that can be displayed in both the Notes client and a Web browser.
Documents are saved to the application, and displayed in the proper
form when retrieved. This means:

Content-creation privileges can be set within the application, and
authorship of the application’s content can be distributed via the
’net. Domino administers security and controls access, and Notes
replication can be used at any point in the process, from collecting
raw text and images for editing to placing finished documents on the
server.

Design standards can be established and enforced. Consistency is an
automatic outgrowth of the design process. No longer is the look and
feel of the page or the site at the mercy of the last person who edited
the HTML code. The authors and editors no longer need to be
experts at CGI scripting or UNIX administration. Any user who can
create e-mail can create content for a ’net site.

Chapter 14: Domino: Creating Web Applications 323

Management of the content can be as simple or as sophisticated as
the organization requires. Workflow tools are available for the
creation of editing and approval processes, audit trails and sign-offs.
And the management inherent in Notes provides the ideal growth
path for a Web site making it easier to manage today’s complex
multi-page sites.

Interactive applications such as the discussion databases for two-way
communication and dynamic content.

SiteCreator
Here is a look at the Web site databases created by the SiteCreator program:

Net.Marketing
Companies that want to do marketing and sales on the Internet will use the
Net.Marketing package to add these functions to the Domino Server and
Domino.Action package:

SiteCreator for creating catalog; request for information;
survey/questionnaire; lead capture, collateral library (including page
templates for brochure, white paper, press release, spec sheet, price
list); event scheduler/signup.

Production/workflow tool.

Marketing tools

mailing list manager/lead manager

catalog builder

order processing/shopping basket manager

payment processing

324 Lotus Notes Release 4.5: A Developer’s Handbook

Net.Marketing provides templates for forms and questionnaires that let an
organization gather information about that audience and its stated interests
and deposit it in Notes or relational databases for aggregation and analysis.

Net.Marketing has functionality in the following areas:

Reduces the time to market delivery of your customer brochures by
managing the electronic publishing of material.

Forms-based surveys also make qualification of customers an
integrated step of the process.

Inquiries can be routed to the proper salespeople and electronic dialogs
initiated.

Statistics can be generated to track interest in particular product lines
and feedback can be collected.

Completion of screening questionnaires can be used as triggers for
granting access to sites and discussions.

Sophisticated targeted marketing and advertising applications based on
content usage analysis, whether third-party applications or developed
in Notes.

Notes databases provide the foundation for creating and managing your
virtual marketplace. Net.Marketing adds tools and templates for the easy
creation of widely used applications, such as document libraries, catalogs,
and electronic brochures. The catalog can be managed as a distributed
application with controlled access and integrated approval workflow.
Documents or other electronic products can be published or updated
quickly. Controlling the user’s access and membership in groups through
the server’s name-and-address book means that factors such as prices and
discount percentages can be treated as variable data.

For processing the order, Net.Marketing supports a “shopping cart”
metaphor that lets a user browse the available items, accumulating
selections for purchase, then place an order for the items and, if
appropriate, manage the delivery or route the order through an approval
process. Net.Marketing includes all the elements required to accept
payment information from the customer and validate the transaction with a
clearing entity in a secure environment, and in real time. This means a user
can enter a credit card number to “buy a subscription” to an information
product and have immediate access to the product. In its first version
Net.Marketing will provide access to a payment processing switch. When
the Secure Electronic Transaction (SET) protocols sponsored by
MasterCard, VISA, IBM, and Netscape, among other companies, are
finalized, they will be supported as well.

Chapter 14: Domino: Creating Web Applications 325

The Scalability of Net.Marketing
Net.Marketing is aimed at the needs of organizations that want payment
capabilities to close the loop of their online marketing activities, such as
selling and delivering research reports and technical documents online, or
accepting payment for a conference registration. But there are no inherent
limits on the Net.Marketing tools, and a growth path exists for any catalog
built with Net.Marketing from the integrated Notes/HTTP server to other
IBM solutions, such as Net.Commerce.

Indigo
Indigo is an information delivery system based on Lotus’ Domino
technology, the Lotus Notes application engine and the Net broadcast
technologies developed by PointCast Incorporated. Indigo is an authoring,
communication and information delivery platform for corporate intranets
that combines external news with internal communications.

Net.Service
Net.Service builds on the Domino Server and Domino.Action with:

SiteCreator for creating: problem reporting; problem routing;
knowledge base with query capability; catalog; documentation library
(product updates, FAQs/tips and techniques); digital download.

Link toolkit (to give users with Web browsers views into
transaction/order processing systems).

Service tools: reporting and analysis tools (to generate stats on visitor
registrations/unique IDs, how many logged messages, for what
products, how long to close, etc.)

One of the most critical applications for many organizations is customer
service and support. Many companies have devoted extensive resources to
building service applications on the workflow and knowledge base
capabilities of Notes, and Net.Service allows them to bring their customers
directly into the system via a Web connection. Net.Service supports
applications that can collect information in forms and questionnaires, then
act on it, directing the users to information sources, and routing problem
reports to customer-service providers within the organization.

For organizations that don’t yet use Notes, doing customer service on the
Web may be the most important application to develop. A sizable installed
base of applications exists that use Notes workflow for call tracking, and its
document management to control knowledge bases. And a vast amount of
expertise exists among the Notes Business Partners who created these
applications.

326 Lotus Notes Release 4.5: A Developer’s Handbook

As Internet phone software moves telephony onto the Web, Net.Service will
be there to provide the management tools to integrate this new technology
into a high-quality customer-care system. With these tools, Net.Service can
be used to create a managed escalation path that guides the customer
toward an answer, and creates a record of the process. The path can begin
with databases of FAQs and tech notes, move through product updates and
timely information, and, if necessary, generate e-mail requests that bring
the customer into direct contact with an employee, with built-in status
reporting all along the way until the problem is resolved.

The Strategic Direction of Lotus’ Internet Applications
Lotus will continue to build on the Domino platform, using the integrated
server model to enhance Notes’ ability to address the broadest possible
base of clients, and to give those clients maximum access to the server —
including future versions of the Notes client. Other Internet Applications
will build on providing access from a Web browser to the Domino server’s
application-creation functions, which will let ISPs offer point-and-click Web
site creation to their customers, as just one example.

Lotus will continue to build upon Domino and Lotus’ Internet Applications
to bring the best interactive Web applications development and hosting
server on the market.

Web Site Organization
Your Notes application is usually accessed by opening the database from
the server’s directory through the Lotus Notes Workspace. With Domino, it
can now be accessed by Web users as well as Notes clients through an
Internet connection.

A Web site contains a home page and related links to help users move
around the information and applications on your Web site. The home page
is an HTML coded file with text and graphics that are linked to the other
areas you want users to access.

On traditional Web servers, the different pages and the associated
compound elements are organized in hierarchical directory structures
which apply the file system security available on that operating system
platform. When you issue an HTTP request to see a page, you are opening a
new HTML coded file existing in a directory.

With Domino, your Web site is structured through Notes databases
designed in the Notes Object store format. When you issue an HTTP
request to see a page, you are opening a Notes element through a Universal
Resource Locator (URL) command and Domino is translating it for viewing
as a Web page.

Chapter 14: Domino: Creating Web Applications 327

Therefore in Notes, your Web site is composed of one or more databases
and structured Notes elements like views, documents, navigators and also
embedded or linked Web standards like CGI, Java. For example, in the
Notes workspace the Domino site looks like this:

When accessing this “application” over the Web, you start off at a home
page. The Domino Web site home page is displayed below. This page is
actually the About Document of the Domino database which we saw on our
workspace in the previous figure. It contains links to the other databases on
our workspace.

328 Lotus Notes Release 4.5: A Developer’s Handbook

Since this will be the default page for all users to go to, you should also set
the page to display automatically even when the user accesses the server
directly by its site or host name. To do this you must set the ‘Home URL’
setting in the server document’s HTTP Settings section as shown below:

In the next section we show you how to define a home page to display on
your Web site using the Domino server.

Designing Your Home Page
A home page is a Web site element which guides Web users through your
site’s information and application(s). It also serves as the site’s focal point.

To create your home page:

1. Create your Site database.

This will contain your home page and links to information and
applications in your Web site. This can be any database of your choice.

2. Set the database properties to launch your choice automatically when
the database is accessed. For example to launch a navigator:

Chapter 14: Domino: Creating Web Applications 329

Keep in mind that when setting On Database Open Launch in the Database
Properties InfoBox, the Launch 1st attachment in the “About database”
option is not supported.

Both navigator options, Open designated Navigator and Open designated
Navigator in its own window, open a navigator in a separate window. The
option Restore as last viewed by user is interpreted as View - Show Folders.

You may also specify an HTML file to serve as the home page.

Web Application Design Elements

The Domino server converts the Notes design elements to HTML to be
displayed to the Web browser. This section deals with using both Notes
elements and Internet technologies to create your Web application. If there
are restrictions and differences from the normal Notes processing of Notes
Elements, these are listed for your reference.

Web Forms
Domino lets you capture information that Web users enter in forms and
store in Notes databases. When you create input forms, you can use Notes
application development resources — for example, computed fields and
input validation formulas. In addition, you can add HTML to further
control the appearance of the form, capture the values in CGI variables, and
customize the Web page response that users see when they submit a form.

To allow users to save documents, Domino places a Submit button at the
end of each form when it converts the form to HTML.

Tip To create a customized Submit button in either a different location on
the form or with a different label, choose Create - Hotspot - Button where
you want to place the button and write the button label. Domino ignores all
button formulas and treats all buttons as Submit buttons. If you create
multiple Submit buttons on a form, Domino uses only the first button you
created, and only that button appears on the Web.

330 Lotus Notes Release 4.5: A Developer’s Handbook

For example, the following form from the Lotus Domino site allows Lotus
to track Domino Beta Code. Notice the customized Submit button:

Using $$Return to Create Customized Responses and Run CGI Scripts
After users submit a form, Domino responds with the default confirmation
“Form processed.” To override the default response, add a computed
$$Return field to your form and include HTML code as part of the formula
for the field.

You can also use a $$Return field to run a custom CGI (Common Gateway
Interface) program after the user submits the form and Notes creates the
document. For example, you may run a CGI program that runs a
NotesPump Activity document. The Web client displays the output of the
CGI program to the user.

To run a CGI program, include the URL to the CGI program file and
enclose it in brackets. Note that you can pass arguments — for example,
values from fields in the form — to the CGI program. For example,

"[http://www.lotus.com/cgi-bin/register.exe?" + Email + "&&&"
+ LastName + "&&&]"

Note If input data from submitted forms can be processed in “batch”
mode and messages to the user are not necessary, consider writing a
LotusScript agent to further process the data instead of using a
$$Return field.

Chapter 14: Domino: Creating Web Applications 331

Personalizing Responses
Create a personalized message for the user who submits a form. For
example, the following $$Return formula returns the response “Thank
you,” and appends the user’s name.

who:= @If(@Left(From; " ") = ""; From; @Left(From; " "));
@Return("<h2>Thank you, " + who + "</h2>
<h4>
Main View");

Adding a Link to Another Page
Include HTML with a URL in a response to link to another page based on
field values in the submitted form. The following $$Return formula returns
a response based on the region the user selects. For example, if the user
selects Europe, the message “Visit our site in Italy” with a link to the Web
site in Italy is shown.

@If(Region="Asia"; stdAnswer + "<h2>Visit our site in Japan</h2>" +
stdFooter;

Region="Europe"; stdAnswer + "<h2>Visit our site in Italy</
h2>" + stdFooter;
stdAnswer + stdFooter);

Returning Another Page
To jump to a different Web page after the user submits the form, enclose a
URL for the page in brackets. When the user submits the form, the Web
client displays the referenced document. For example, the following
$$Return formula displays the home page for the Lotus Japan site.

"[http://www.japan.lotus.com]"

Using CGI Variables to Capture User Information Automatically
Common Gateway Interface (CGI) programs are a standard for interfacing
external applications with HTTP servers. When a Web user submits a form,
the HTTP server gathers the information and passes it to a CGI program.
Although Domino doesn’t require the use of many types of CGI programs
that a typical HTTP server requires, Notes application developers may
want to capture CGI environment variables that give information about the
Web client.

To return CGI variables, create an editable field with the corresponding
variable name (as listed in the following table). Mark the fields “Hide when
Editing,” so users cannot enter information in them. For example, to learn
the Internet Protocol (IP) address of the user submitting the form, add a
field named Remote_Addr to the form.

332 Lotus Notes Release 4.5: A Developer’s Handbook

Field Name Returns

Remote_Host The hostname making the request.

Remote_Addr The IP address of the remote host making the request.

Remote_User Authentication method that returns the username they have
authenticated as.

HTTP_User_Agent The browser the client is using to send the request.

HTTP_Referer The URL of the page the user used to get here.

Server_Software The name and version of the information server software
running the CGI program.

Server_Name The server’s hostname, DNS alias, or IP address as it would
appear in self-referencing URLs.

Server_URL URL passed to the server.

Gateway_Interface The version of the CGI spec to which the server complies.

Server_Protocol The name and revision of the information protocol this
request came in with.

Server_Port The port to which the request was sent.

Request_Method The method with which the request was made. For HTTP,
this is “GET,” “HEAD,” “POST,” etc.

Path_Info The extra path information, as given by the client. In other
words, scripts can be accessed by their virtual pathname,
followed by extra information at the end of this path. The
extra information is sent as PATH_INFO.

Path_Translated The server provides a translated version of PATH_INFO,
which takes the path and does any virtual-to-physical
mapping to it.

Script_Name A virtual path to the script being executed, used for
self-referencing URLs.

Query_String The information which follows the ? in the URL which
referenced this script.

Auth_Type If the server supports user authentication, and the script is
protected, this is the protocol-specific authentication method
used to validate the user.

Remote_Ident This variable will be set to the remote user name retrieved
from the server. Usage of this variable should be limited to
logging only.

Content_Type For queries which have attached information, such as HTTP
POST and PUT, this is the content type of the data.

Content_Length The length of the content as given by the client.

HTTP_Accept The MIME types which the client will accept, as given by
HTTP headers.

Chapter 14: Domino: Creating Web Applications 333

When putting together a form, keep the following information in mind.

Form Properties
 Some form properties behave differently over the Web:

Merge replication conflicts setting is not supported.

Version control is not supported.

Automatically refresh fields setting is not supported.

Disable field exchange is not applicable to Web users.

On Create event

Formulas inherit values from selected document is supported, except
for rich text field inheritance on forms.

Because document selection isn’t applicable to the Web, default value
formulas cannot reference a “selected document in the view.”

Inherit entire document into selected rich text field is not supported.

On Open event

Show context pane is not supported.

Store form in document is supported in read mode only. Do not use for
documents that need to be created or edited on the Web.

Security

Default encryption keys are not applicable to Web users.

Disable printing/forwarding/copying from clipboard is not supported.

Form Elements
Domino 1.0 has some limitations we discuss here, but this is quickly
changing. In future releases these will be resolved. Check the Lotus Domino
Web site for the latest release.

Attachments are supported over Web forms, including attachments with no
hotspots.

On forms, buttons are not supported, except for customized Submit
buttons. See the Section on customizing the submit button in this chapter.

Graphics are supported and displayed on the HTML page.

Hotspots are supported, except for pop-ups. Layout regions are not
supported. You can use tables to align form components.

Sections are supported, but they always appear expanded and without a
title. Sections cannot be hidden and section security features, such as editor
properties and signing, are not available.

334 Lotus Notes Release 4.5: A Developer’s Handbook

Tablesare supported, including setting the width of table columns. The
Notes table width and column width information is used on the Web. If the
top left cell of a Notes table has a border, the entire table is displayed with a
border; otherwise, there is no border.

Fields on Web Forms
Keyword fields are supported, except for the keyword entry helper option.
You can control the number of visible rows by adding HTML code to the
field help in the Field Properties InfoBox. See the section on adding HTML
attributes in this chapter.

Formatting Text for Web Applications
Domino supports most Notes formatting features by converting them to
HTML tags. Certain Notes formatting features (for example, indentation,
inter-line spacing, and tabs) do not appear when viewed from a Web
browser because HTML has no corresponding format. In addition, not all
browsers support all the HTML tags that Domino generates.

When you format text remember that Domino maps the font size you select
in Notes to HTML sizes. Point sizes equal to or less than
8,10,12,14,18,24,>24 map to HTML sizes 1,2,3,4,5,6, 7 respectively.

Note Domino does not map font sizes to HTML headings.

Choosing Font Style
Domino supports all Notes font styles. To align a column of numbers or
preserve or insert spaces, use a monospaced font like Courier. Domino
converts monospaced fonts to a monospaced font on the Web and preserves
any spaces you enter.

Choosing a Text Color
Domino supports all text colors available in Notes.

Choosing Other Formatting Features
Domino supports the following:

Bullets and numbered lists

Alignment (except full justification and no wrap)

Spacing

Named styles

Chapter 14: Domino: Creating Web Applications 335

Web Views
Notes Views are dynamically created as Web pages to display the links to
the documents. You can move around the view, expand and collapse, and
search much as you do in Notes except for the fact that the view is split into
pages. This is so that if a view contains hundreds of documents, you are not
presented with one page containing all of them. This gives you better
performance on the page you are looking at and it makes navigation more
manageable. A sample view is shown below:

The View shown above lists the documents on the Domino Download
database. Notice the Expand and Collapse navigation buttons allowing you
to use the view as you would in Notes.

Some key design points for views follow:

View and Folder Properties
Folders are supported but you cannot move documents into folders.

Multi-line column headings and multi-line rows are supported.

Tip To prevent line wrap, specify 1 in the Lines per heading setting in
the View properties InfoBox. (They’ll have a <NOWRAP> HTML tag.)
Specifying a number greater than 1 causes lines to wrap on the Web.
The same guidelines are true for the Lines per row setting.

On Open, Go To options are not supported.

On Refresh options are not supported.

336 Lotus Notes Release 4.5: A Developer’s Handbook

Show in View menu is not applicable to Web users since Web
applications do not have a View menu. To remove a view from the
folders navigator, use a hidden view.

Style options for Unread rows, Alternate row colors, Show selection
margin, and Beveled column headings are not supported.

View Indexing options are not applicable, views can be re-indexed at a
Notes server.

Column Properties
Click on column header to sort setting is not supported.

Collapsed/expanded categories setting is supported. It expands or
collapses processes one category at a time (equivalent to
Expand/Collapse Selected Level).

Resizable columns are not supported.

“Show twisties” when row is expandable is not available.

Navigators
Navigators are translated to image maps by the Domino server. Image
maps are graphical areas on a Web page that contain links to other pages.
When you open a navigator the different regions of the map correspond to
a different Web page as defined in the navigator links. The navigator must
be made up with a single graphic background with hotspots. Overlaid
text and buttons are not supported. If you create a navigator that contains
objects not supported on the Web, such as buttons, you see a bitmap, but
the navigator is not functional.

The following is the navigator used in the Domino discussion database:

Chapter 14: Domino: Creating Web Applications 337

Here is the actual design showing the formula for one of the hotspots which
expand a view:

Client-Side and Server-Side Image Maps
Web image maps can be handled in two ways. With server-side image
maps, the browser sends the coordinates for a region in the image map to
the server, and the server sends the corresponding URL information back to
the browser. With client-side image maps, the browser generates the URL
information for the regions in the image map.

Domino converts a navigator into an image map that is both a client-side
and a server-side image map, which means that all browsers are
automatically supported. If the browser supports client-side image maps, it
uses those tags. If the browser does not support client-side image maps, it
uses the server-side image map HTML tags.

Use formulas to compute which view or database to link to. When you
create the navigator, use actions for different regions. For example, use a
formula to determine whether the user is a Notes user or a Web user. Then
based on the result of the formula, use the @Command(OpenView) function
to link to a specific view.

338 Lotus Notes Release 4.5: A Developer’s Handbook

The following are property differences when using navigators over the
Web:

Auto adjust panes at runtime do not work as they are not applicable to
Web users.

Highlight when options for navigator objects is not supported.

Navigator graphic background is supported over the Web. Choose
Create - Graphic Background.

Note Do not use the Create - Graphic Button as it does not convert the
navigator to an image map.

Navigator objects are supported only as hotspot polygons and hotspot
rectangles. All other objects, such as text boxes, ellipses, and graphic
buttons, are not supported and do not function.

Agents, LotusScript, and Actions
The following list describes the restrictions placed on using actions, agents
and LotusScript with your Web applications.

Agents are supported, except for the run option “If Document Has Been
Pasted” and the document selection option “Selected documents.”
The concepts of “pasted documents” and “selected documents” don’t
apply to Web applications.

LotusScript for forms, actions, and buttons is not supported. Use the
$$Return field and CGI scripts to achieve the same results as a
LotusScript QuerySave or QueryClose event.

Simple actions for agents, form and view actions are not supported.

System actions supplied with forms and views (such as @Edit
Document, @Categorize) are not supported. Use supported
@Commands to create the equivalent actions.

@Function Formulas in Web Applications
Using @Functions in Web applications is somewhat restricted. The
following list describes those @Functions not available or where available,
the restriction on using it over the Web is noted.

Hierarchy Functions

@AllChildren, @AllDescendants, @Certificate, @DBCommand,
@DocChildren, @DocDescendants, @DocLevel, @DocNumber,
@DocParentNumber, @IsCategory, @IsExpandable, @Responses,

@DocSiblings is available for use only in view and column formulas.

Dynamic Data Exchange Functions

@DDEExecute, @DDEInitiate, @DDEPoke, @DDETerminate.

Chapter 14: Domino: Creating Web Applications 339

@Environment, @SetEnvironment, ENVIRONMENT keyword
not applicable to Web users. Use predefined field names to gather
information about the Web user’s environment by requesting Common
Gateway Interface (CGI) environment variables.

Mail Functions

@MailSend, @Domain, @MailDbName

Preferences Functions

@MailEncryptSavedPreference, @MailEncryptSendPreference,
@MailSavePreference, @MailSignPreference, @GetPortsList

Element state Functions

@IsAgentEnabled

@UniqueID is supported. Avoid values based on time computations in
computed-when-composed fields, such as @Now and @UniqueID, that
may be updated a second time during a Web transaction. To simulate
an @UniqueID formula, use @DocUniqueID and compute an extra
value, such as an incremental integer.

Web Navigator Functions

@URLGetHeader, @URLHistory , @UserAccess

Security Functions

@UserPrivileges

@UserRoles is supported. Appends $$WebClient to the list of roles
and can be used to differentiate between Notes and Web clients

@ViewTitle is supported on forms in read and edit mode. Newly
composed forms cannot use it.

@Platform is supported and returns server’s platform only.

@DocMark

@DeleteDocument

@DialogBox

@PickList

@Prompt

@IsModalHelp

340 Lotus Notes Release 4.5: A Developer’s Handbook

@Commands Formulas
Most @Commands are based on the Notes workstation user interface and
are not applicable to Web applications. The following @Commands are
supported with the noted differences. They are converted to URLs on
the Web:

@Function Name Description

@Command([Compose]) Can be used but the server argument cannot
be used.

@Command([EditClear]) Deletes the current document and can be used
only for forms.

@Command([EditDocument]) Can be used only on forms.

@Command([FileOpenDatabase]) Accepts only the database, view, and navigator
name arguments.

@Command([NavigateNext]),
@Command([NavigatePrev]),
@Command([NavigateNextMain]),
@Command([NavigatePrevMain])

Navigation Commands

@Command([OpenNavigator]) Accepts only the navigator argument.

@Command([OpenView]) Accepts only the view name argument.

@Command([ToolsRunMacro])

Working With Images
Domino converts images to Graphics Interchange Format (GIF) or Joint
Photographic Experts Group (JPEG) files for display on the Web based on
server document setting. Domino passes the image size and scaling
information to the browser. If the browser supports scaling, the image has
the same size and scale as it does in Notes. If the browser does not support
scaling, the image appears in its original size, regardless of how you size it
in Notes.

Notes stores graphics in two formats — a platform-dependent metafile and
a 256-color platform-independent bitmap. Domino uses the
platform-independent bitmap which, in some cases, may cause the graphic
to look slightly different on the Web.

Chapter 14: Domino: Creating Web Applications 341

Interlaced GIF Files
Browsers typically display a GIF image while it is being loaded. An
interlaced GIF file is one whose image lines are stored out of sequence —
for example, as every eighth row, then every fourth row, then every second
row, and so on. To users, the image seems to appear quickly because their
eyes tend to “fill in” the missing pieces.

Progressive JPEG Files
Browsers typically load and display a JPEG image in one pass. A
progressive JPEG image loads incrementally in several passes: the image
becomes clearer with each pass. The effect is that users can identify a
progressive JPEG image before it is completely downloaded.

Using Passthru HTML to Reference an Image
You can use passthru HTML to reference an image for Web-only viewing.
For example, to reference a GIF file from the IBM home page, use this
formula:

[]

The current Domino URL syntax for referencing bitmaps in Notes
documents — specifically, the field offset part — makes it impractical for
users to create these URLs manually. As an alternative, you may paste the
actual bitmap in place of a reference or create URL references to image files
stored in the file system.

Working With Attachments
You can attach any type of file to a document, including binary files,
compressed files, executable files, and Notes database (NSF) files. The
reference to the file attachment appears as a graphic of the file and is
located in a rich text field in Notes.

Domino converts the graphic representing the file to a GIF image and
displays the GIF image as a link to the attached file on the Web. When
Domino converts a file attachment, it generates a URL for the file
attachment. The last component of the URL is the file name. For example:

http://domino.lotus.com/domdown.nsf/<ViewUNID>/<DocumentUNID>
/Attachments/0.54/Dom.txt?OpenElement

342 Lotus Notes Release 4.5: A Developer’s Handbook

Here is a sample document containing an attachment. Notice the URL on
the bottom of the screen:

The browser uses the name specified as part of the URL when it saves
the file.

Launching the Application for an Attached File
Domino supports MIME (Multimedia Internet Mail Extension) type
mappings — a process that maps an attachment’s file extension to an
external viewer or a helper application. This means that users can view or
launch attachments automatically from Web pages.

For example, a .WAV file on a Web page can be played automatically on a
user’s machine. As long as the application for the attached file is installed
on the user’s machine and the user’s HTTPD.CNF file includes a mapping
for .WAV files, the browser starts the Media Player when a user clicks the
attached file. Refer to the Domino Documentation for more on MIME
support.

Adding HTML to Notes Elements

To apply formats and attributes that are available in HTML but not in
Notes, include HTML code in Notes documents, forms, fields, or view
columns. Domino does not attempt to convert the data; instead, it combines
the HTML code with the Notes data and passes it through to the browser
for display.

Chapter 14: Domino: Creating Web Applications 343

To enter HTML code, you can:

Enter the HTML instructions directly in a document, a form, a field or
elements in a view.
Create and apply a paragraph style named HTML.

HTML Code Syntax
To enter HTML code, use the following syntax:

[<html code>]

where html code is the HTML tag you want to include.

Useful Examples
The following table lists some of the more useful HTML codes:

HTML Code Description.

<h1> thru
<h8>

Headings from 1, the largest to 8 the smallest. End a heading with
the </h1> command.

<hr> Creates a horizontal rule across the page.

<p> Paragraph

 Insert a break or new line

<a href> Link to another page. IBM
Home Page

To add a horizontal rule to your page when viewed on the Internet, enter:

[<hr>]

Here is a sample document in Notes which contains HTML code:

344 Lotus Notes Release 4.5: A Developer’s Handbook

Creating an HTML Text Paragraph Style
To include HTML code in a Notes document or form, create a text
paragraph style and name it HTML. Domino does not convert anything
formatted with the HTML paragraph style.

1. Highlight the paragraph you want to format as HTML.

2. Choose Text Properties and click the Styles tab in the InfoBox.

3. Click Create Style, enter HTML in the Style Name field, and click OK.

4. Close the InfoBox.

Tip When you use the HTML paragraph style, it’s not necessary to enclose
the HTML instructions in brackets.

Tip To hide the HTML code from users who read the document, select the
text, choose Text - Text Properties, select the Hide Paragraph tab, and select
“Previewed for reading” and “Opened for Reading.”

Adding HTML Attributes to an Editable Field
Domino lets you control the size and length of fields in the form. To
override the field defaults, enter HTML code in the Help description box of
the Field Properties InfoBox.

Chapter 14: Domino: Creating Web Applications 345

Size and Maximum Length of Text Fields
You can specify the size and length of text fields. For example, the following
figure specifies that the Name field display 35 characters and accept a
maximum of 50 characters.

Maximum Number of Visible Choices in Keywords Fields
You can specify the maximum number of rows that are visible in keywords
fields. For example, the following command specifies that the Request field
has 5 rows. If that field has more than five keywords, a scroll bar appears so
users can scroll to other keywords.

[<SIZE=5>]

Wrap Setting for a Rich Text Field
You can specify the wrap setting for a rich text field. For example, the
HTML tag [<WRAP=VIRTUAL>] specifies that text in the field wrap and
that no line feeds or carriage returns be inserted at the end of lines.

Adding HTML Code to a View
You can include passthru HTML in a view column formula that displays an
image depending on the results of the formula. For example, the following
formula inserts a NEW.GIF image if the document was created within the
last 5 days; otherwise, no graphic is displayed.

@If(@Now>@Adjust(@Created;0;0;5;0;0;0);"";"[]")

346 Lotus Notes Release 4.5: A Developer’s Handbook

Creating Links

Creating and maintaining links on Web sites is easy because you can use
Notes links to generate structured, easy-to-navigate, accurate links that
don’t require manual hard coding or continual updating in the file system.

Domino converts any Notes-created links (document, view, and database
links) to hypertext links that allow users to browse linked pages on the
Web. In addition, you can include links to other pages on the Web.

Links in Notes are more stable than links in HTML as they are based on the
page’s identity not on its location in the file system. HTML links are hard
coded references to file names, so if you move or rename a file, the link no
longer works. Notes links do not reference file names; rather, they reference
the universal ID (also known as the unique ID or UNID) of a database,
view, or document. So even if a view name changes, a link to a document in
that view remains valid.

Linking to Documents, Views, and Databases

A Notes Link
Add a Notes link to a document to let users switch to another document,
view, folder, or database. In the Web browser, users click the link icon to
access the link.

A Link Hotspot
Add a link hotspot to an area of a document (such as text or a graphic) to
let users switch to another document, view, folder, or database.

An Action Hotspot
Use an action hotspot with an @Command formula or an @URLOpen
formula to create the link. For example:

@URLOpen("http://www.lotus.com")

An Action Bar
Use an @Command formula in the action bar to create the link. For
example:

For a view in the current database

@Command([OpenView]; " viewname ")

For a view in another database

@Command([OpenView];"":" database "; " viewname ")

Chapter 14: Domino: Creating Web Applications 347

Passthru HTML
Use passthru HTML to link to any Web page. For example:

To open the By Date view in the Domino Discussion database:

[<AHREF=http://domino.lotus.com/disc.nsf/By+Date?OpenView>SHo
wTheByDateView]

 Linking to Forms and Navigators
To create a link to a form or navigator, use any of the following techniques:

Action Bar
Use an @Command formula in the action bar to create the link.

For a form in the current database:

@Command([Compose]; " formname ")

For a form in another database:

@Command([Compose];"":" database "; " formname ")

For a navigator in the current database:

@Command([OpenNavigator]; " navigatorname ")

For a navigator in another database:

@Command([FileOpenDatabase];"":" database "; " navigatorname ")

The following action button formula links to a Main Topic form:

@Command([Compose];"Main Topic")

Action Hotspot
Use @Command formulas or the @URLOpen formula in the action hotspot
to create the link. For example, @URLOpen(“http://www.ibm.com”).

Note that in general, action hotspots and action bars accept the same types
of formulas.

HTML Link
You can also use an HTML link. For example, the syntax for linking to a
form is:

[Click here to create
document]

Note Domino cannot generate links based on the currently selected
document in a view because at that point there is no notion of a “selected”
document to which to respond. Users must open (or select) a document to
see the link to the Response form.

348 Lotus Notes Release 4.5: A Developer’s Handbook

Linking to an External Web Site
To create a link to an external Web page, use any of the following
techniques:

Action Hotspot
Use an action hotspot to let users perform the same action in Notes and on
the Web. Use the @URLOpen formula in the action hotspot to create the
link.

Action Bar
Use the @URLOpen formula in the action button to create the link. For
example:

@URLOpen("http://www.ibm.com")

Passthru HTML
Use passthru HTML to link to any Web page.

[Go to Lotus</A]

Domino URLs
Domino supports a wide range of commands that can be used by the
application developer to access the Notes database currently being viewed
from a Web browser. Each command takes the form of a URL and allows
you to access specific items within the database directly.

All calls to a Domino server from a Web client are made using the URL
syntax. This is broken down into a number of component parts, the number
being dependent on the Notes item you wish to access. All URL calls to
Domino must begin with the server’s name and the protocol to use.

http://Millennia.Lotus.Com

In this case, the URL specifies which protocol to use, HTTP and then the
name of the server, Millennia.Lotus.Com.

After this, you can specify parameters to Domino that follow the following
syntax:

TypeOfNotesObject/NameOfNotesObject/
?ActionToPerform&Arguments

Here, TypeOfNotesObject can be a database, a view within a database,
a form within a database and so on.

NameOfNotesDataObject is the name of the database you are trying to
open, the name of a view within a database and so on.

Chapter 14: Domino: Creating Web Applications 349

?ActionToPerform is the type of action that you want to perform on the
NotesObject such as opening the database, opening the view, creating a
new document and so on.

&Arguments are optional parameters that you can add to the URL to
provide view formatting and document control.

Domino Objects
Below are the most commonly used cases for each of the objects.

Database Object
By default, when a Web client accesses a Domino site using just the site
name, Domino will open the database that is specified in the server
document of the Public Name and Address Book.

For example, when a Web client specifies HTTP://Millennia.Lotus.Com,
Domino will open the database specified in the Default home page field of the
Name and Address Book.

If you wish to access a different database you can specify the Database
option in the URL, for example:

http://Millennia.Lotus.Com/Courses.nsf/?OpenDatabase

View Object
To open a specific view within a database, specify its name in the URL, for
example:

http://Millennia.Lotus.Com/Courses.nsf/CourseInfo/?OpenView

This will open the CourseInfo view in the Courses database.

You may also specify the NoteID, NoteUNID or $defaultView instead of its
name.

Form Object
To open a specific form within a database, use the following syntax:

http://Millenia.Lotus.Com/Courses.nsf/CourseForm/?OpenForm

This will open the CourseForm form within the Courses database.

You may also specify the NoteID, NoteUNID or $defaultForm instead of its
name.

Navigator Object
To open a specific navigator within a database, use the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/MainNav/?OpenNavigator

This will open the MainNav navigator within the Courses database.

You may also specify the NoteID, NoteUNID or $defaultNav instead of
its name.

350 Lotus Notes Release 4.5: A Developer’s Handbook

Agent Object
To run an agent on the server, use the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/UpdateAll/?OpenAgent

This will run the agent UpdateAll within the Courses database on the
server.

You may also specify NoteID or NoteUNID instead of the agent’s name.

Document Object
Documents need to be opened from a specific view within the database
with the NoteID or NoteUNID of the document. To open a document
within a database, use the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/CourseInfo/5ce629c6114
98d5085256392006a03e1/?OpenDocument

This will open a specific document within the Courses database displayed
from the CourseInfoView.

Database Icon Object
The database icon can be referenced using the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/$icon

Database Help About Object
The database Help About document can be referenced using the following
syntax:

http://Millennia.Lotus.Com/Courses.nsf/$about

Database Help Object
The database help document can be referenced using the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/$help

Search and Search Form Object
A database can either be searched using the default search form or a form
that you specify. To access the default search form use the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/CourseInfo/$searchForm
?SearchView

This will open up the default search form and allow users to search the
CourseInfo view.

Chapter 14: Domino: Creating Web Applications 351

To specify your own document that users can enter search criteria into, use
the following syntax:

http://Millennia.Lotus.Com/Courses.nsf/CourseInfo/
CourseSearch/CourseSearch?OpenForm

This command will open a document that contains the search fields you
wish the user to enter information into. When the user then presses the
submit button to start the search use the following syntax to execute
their query:

http://Millennia.Lotus.Com/Courses.nsf/CourseInfo/
CourseSearch/?SearchView&Query=Notes+Expert+AND+Basingstoke

This command tells Domino to search in the CourseSearch view for all the
documents containing the words “Notes Expert” and “Basingstoke.”

Domino Actions
As you have seen in the examples above, including the object in the URL
is not always enough for Domino to know what it is you wish to do with
the object. This is handled using actions, which make something happen to
the object.

In Domino there are three types of actions, None, Implicit, and Explicit.

Implicit actions assume to act on the object in the URL, explicit actions force
a specific action to occur.

Implicit Actions Explicit Actions

?Open ?OpenServer

?OpenDatabase

?OpenView

?OpenNavigator

?OpenForm

?OpenAgent

?OpenDocument

?OpenElement (bitmaps, attachments etc.)

?Create (documents only) ?CreateDocument (form post action)

?Edit ?EditDocument

?Save (documents only) ?SaveDocument (form post action)

?Delete (documents only) ?DeleteDocument

?Search (views only) ?SearchView

352 Lotus Notes Release 4.5: A Developer’s Handbook

Domino Arguments
A further level of control can be given to the object and action that you
specify in the URL. Each argument needs to be prefaced with an & symbol.

Below is a table of the available Domino arguments.

Related Action and Argument Function

?OpenView&Start Opens a view with a specified number of
documents from the top, for example,
?OpenView&Start=3

?OpenView&Count The number of documents displayed in
a view

?OpenView&Expand Expands an item in the view

?OpenView&ExpandView Expands all items in the view

?OpenView&Collapse Collapse an item in the view

?OpenView&CollapseView Collapses all items in the view

?OpenElement&FieldElemType Specifies the type of object expected at a field
offset

?OpenElement&FieldElemFormat Specifies the format desired for inline
graphics (GIF or JPEG)

&OldSearchQuery Re-runs the last query

?SearchView&SearchMax Specify the maximum number of results you
wish returned from the query

?SearchView&SearchWV Include word variants in the search

&SearchOrder Ascending or Descending

&SearchThesarus ??

&ParentUNID Specifies the UNID of the document to
respond to and/or inherit from when creating
new documents

Chapter 14: Domino: Creating Web Applications 353

Chapter 15
Domino: Sample Applications

Overview

This chapter describes in detail three examples for using Lotus Notes with
the Internet.

A look at a Domino site registration database

A look at the PageMinder agent

A case study that builds a Web site to publish and retrieve information
to and from the Internet.

This chapter was written using Release 1.0 of the Domino server.

An Application to Register Users Over the Web

If you want to protect certain areas of your site, and require that Web users
enter a user name and password before they access protected information,
for example, you’ll need to create an account for each user. To do this, you
register users in the Public Name and Address Book on the Domino server.

This section covers the design of such a Notes application. The following
examples are taken from the Domino Registration Sample which is used to
register persons participating in the Domino Beta Programs on the Web.

Basic Concepts
The intention of this application is to gather information about the user who
wants to access your Web site and Web applications. The user fills out a
form and submits the form. Once you have all the data you need to decide
whether the user may use the server or not you will run some authorization
tasks and provide the user with a user ID and password combination. An
agent runs against the database looking for new forms and adds new users
to the Name and Address Book. Then, when a user wants to access your
server, the system checks if this user has already registered and allows the
user access.

355

Application Design
The sample application consists of a single Notes database. By default,
when this database is opened it displays its About Database Document. This
document contains a hotspot which kicks off the registration of a user.

Note The About Database Document contains plain text and Notes design
elements as well as HTML tags, for example <h2> and </h2> for
highlighting text.

356 Lotus Notes Release 4.5: A Developer’s Handbook

The action specified for the hotspot is @Command([Compose]; “New
Account”). If the user clicks on this hotspot a new document using the form
New Account is composed.

This picture shows the upper part of the form. As you see, it is used to
gather information about the user. Let us have a closer look at each field:

FirstName

This field is marked as a required field. Therefore, the input translation
formula is coded as @Trim(FirstName) which removes any leading,
trailing, and redundant spaces from the input string.

The input validation formula is coded as:

@If(

 @Length(FirstName) < 2; @Failure("First name is a required field. Please go
back to the form to include a first name.");

 @Contains(FirstName;
@Explode("<x>x{x}x[x]x?x!x#x-x=x+x*x(x)x&x^x%x$x@x/x\\x\""; "x"));
@Failure("Please use only letters in your first name");

 @Success)

Chapter 15: Domino: Sample Applications 357

First, this formula checks if the user name entered consists of more than
1 character. If only 1 character is entered as first name an error message
is issued. The next check looks for unwanted characters in the name
field. This is done by converting a string of special characters to a text
list using

@Explode("<x>x{x}x[x]x?x!x#x-x=x+x*x(x)x&x^x%x$x@x/x\\x\""; "x").

In this formula the character x serves as delimiter between the single
special characters which are to be in the resulting text list. @Contains
then determines whether one of the special characters is contained in
the input string or not. Depending on the result of this check an error
message is issued or @Success is called to indicate a successful
completion of the tests.

MiddleInitial

For this field an input translation formula @Trim(MiddleInitial) is used
and an input validation formula checks for special characters.

LastName

The checks for this field are the same as for FirstName.

Company

Only an @Trim(Company) is coded as input translation formula for this
field.

OfficePhoneNumber

No checks are implemented for this field.

E-mail

Again, as input translation formula an @Trim(Email) is coded, and as
input validation formula we use

domain := @RightBack(Email; ".");

@If(

 @Trim(Email) = "" |

 !@Contains(Email; "@") |

 @Length(domain) < 2 | @Length(domain) > 3 |

 (@Length(domain) = 3 & @Member(@LowerCase(domain);
"com":"edu":"org":"net":"gov":"mil":"int") = 0) |

 @Trim(@Left(Email; "@")) = "";

 @Failure("A valid Internet E-mail address is required. Please go back to the
form to enter or correct the E-mail address.");
 @Success)

358 Lotus Notes Release 4.5: A Developer’s Handbook

This formula uses a temporary variable domain which holds the domain
of the entered E-mail address. The test completes successfully if the
following conditions are met:

Email must not be blank.

Email must contain the character @.

The number of characters of domain must be two or three.

If domain consists of three characters it must be one of com, edu, org,
net, gov, mil, or int.

The part of Email left of @ must not be blank.

If one of these conditions is not met @Failure is used to issue the error
message.

NewPassword

This is a shared field. The definition of this field contains a default
value formula which builds a new password randomly. Input
translation and validation formulas are used to check the contents of
this field.

The second part of the New Account form looks like this:

Chapter 15: Domino: Sample Applications 359

As you can see there are some explanations for how to enter the user ID
and password combination in future sessions. There is also a button to
submit the request to the Notes server.

If you are in design mode and scroll down you will find hidden fields in
this form. These fields are used to store information about this user record
during the process of authorizing the user to access the Notes server. We
will discuss these fields later on when we use them.

Error Handling on Form New Account
Keep in mind that we are discussing a Domino application which displays
its forms using a Web browser. Therefore, the error handling differs from
native Notes applications.

You may specify your error message string using the @Failure formula if
you detect invalid input. Domino displays this message in its own HTML
page which is generated on-the-fly. Of course, the string you pass to the
@Failure formula may contain HTML tags to control the formatting of the
failure message. For example, @Failure(“<h2>Invalid Input</h2>”) would
generate a page with “Invalid Input” in big bold letters.

If your tests result in an @Success formula, you may add a field to your form
called $$Return. The formula in this field gets evaluated on @Success, and
the resulting text is displayed on an HTML page. As with @Failure, the text
string can include HTML tags. In our application the following string is
used as a value for the field $$Return.

"<body>"+

"<p>Thank you, " + FirstName + ", your request will be processed." +

"<p>If there is no problem with your request, your account should be ready to use
in about 10 minutes." +

"<p>Your user name will be " + FullName + "." +

"<p>If there is a problem (for example, the name \"" + FullName + "\" is already
in use), you will receive an e-mail explaining the problem." +

"<p>Lotus Domino Home Page"

Note FullName is a hidden field on the form which is composed using the
fields FirstName, MiddleInitial, and LastName.

360 Lotus Notes Release 4.5: A Developer’s Handbook

Processing User Requests
Once a user has filled out a request form and submitted it for processing, a
new document is created in the database. Every time a document is created
or modified a Notes agent called Handle Requests runs to process these
documents.

This agent acts on all new or modified documents which contain a field
named State and the content of this field is “P,” for Pending. State is one of
the hidden fields in form New Account, and its initial value is “P.”
Therefore, this agent handles all documents which have been submitted by
users to get an account on the Notes server. The actions the agent is to
perform are coded in LotusScript.

Here is the main routine of this agent (declarations and settings of constant
strings are done in the declaration section of the agent):

Sub Initialize

 Set s = New NotesSession
 Set db = s.CurrentDatabase

 '** Set Name & Address book where new accounts
 '** should be added
 Set nabPeople = New NotesDatabase("", nabPeoplePath$)
 Set nabGroups = New NotesDatabase("", nabGroupsPath$)

Chapter 15: Domino: Sample Applications 361

 '** Get the collection of all documents this agent should
 '** run against
 '** (Those that have been newly modified or created)

 Dim coll As NotesDocumentCollection
 Set coll = db.UnprocessedDocuments

 Dim doc As NotesDocument
 Dim i As Integer

 '** Loop over the documents to handle.

 For i = 1 To coll.Count
 Set doc = coll.GetNthDocument(i)

 '** Handle Change Password Requests
 If (doc.Form(0) = "ChPw" And doc.State(0) = "P") Then
 Call HandleChangePassword(doc)
 End If

 '** Handle New Account Requests
 If (doc.Form(0) = "NewAcc" And doc.State(0) = "P") Then
 Call HandleNewAccount(doc)
 End If

 '** UpdateProcessedDoc makes sure the agent won't run on
 '** this document again.

 Call s.UpdateProcessedDoc(doc)
 Next

End Sub

At the beginning the variables s, db, and coll are set to have access to the
Notes session, the database, and the document collection which contains all
unprocessed documents. Using a loop, each unprocessed document is
accessed and processed depending on the contents of the fields Form and
State. If a document contains a request for a new account the subroutine
HandleNewAccount is called. Input parameter to this subroutine is the
document to be processed (variable req).

Sub HandleNewAccount (req As NotesDocument)
 Dim status As String
 On Error Goto Oops

 Call WriteInitialAgentData(req)

362 Lotus Notes Release 4.5: A Developer’s Handbook

 '** Password must have been hashed.
 If Not IsPasswordOK(req.NewPassword(0)) Then
 req.AgentStatus = "Password ill-formed"
 Goto Done
 End If

 '** Check that the user doesn't already exist in the NAB
 Dim docPerson As NotesDocument
 Set docPerson = GetPersonDocument(req.FullName(0))

 If Not (docPerson Is Nothing) Then
 req.AgentStatus = "Duplicate name"
 req.SendMailTo = req.Email
 Dim message As String
 message =
 req.Message = message
 Goto Done
 End If

 '** Create the person document in the NAB

 Set docPerson = New NotesDocument(nabPeople)

 docPerson.Form = "Person"
 docPerson.Type = "Person"
 docPerson.LastName = req.LastName
 docPerson.FirstName = req.FirstName
 docPerson.MiddleInitial = req.MiddleInitial
 docPerson.FullName = req.FullName
 docPerson.OfficePhoneNumber = req.OfficePhoneNumber
 docPerson.HTTPPassword = req.NewPassword
 Call docPerson.ComputeWithForm(False, False)
 Call docPerson.Save(False, True)

 '** Add the person to the proper groups

 Forall group In req.GroupsToJoin
 Call AddUserToGroup(req.FullName(0), group)
 End Forall

 '** Create the person document in this database

 Set docPerson = New NotesDocument(req.ParentDatabase)

 docPerson.Form = "Person"
 docPerson.LastName = req.LastName
 docPerson.FirstName = req.FirstName
 docPerson.MiddleInitial = req.MiddleInitial

Chapter 15: Domino: Sample Applications 363

 docPerson.FullName = req.FullName
 docPerson.OfficePhoneNumber = req.OfficePhoneNumber
 docPerson.HTTPPassword = req.NewPassword
 docPerson.Email = req.Email
 docPerson.Company = req.Company
 Call docPerson.ComputeWithForm(False, False)
 Call docPerson.Save(False, True)

 req.AgentStatus = "Successful"
 req.SendMailTo = ""

Done:
 On Error Goto Bail

 Call WriteFinalAgentData(req)

 Exit Sub

Oops:
 status$ = "Error " & Err() & " at line " & _
Erl() & ": " & Error()
 req.AgentStatus = status$
 Resume Done
 Bail:
 status$ = "Error " & Err() & " at line " & _
 Erl() & ": " & Error()
 Resume BailOut
BailOut:

End Sub

First, this subroutine calls WriteInitialAgentData which is a subroutine to set
initial bookkeeping information into the request document, for example it
sets the field AgentStatus to “Agent running”. Next it calls a subroutine to
check if the password is built correctly. The following check uses the
function GetPersonDocument to look up the Name and Address Book for an
entry of the requesting person. If such an entry is found the following error
message is composed:

"The name " & req.FullName(0) & " is already in use. Please try registering again
with a different name. If you have registered more than once, the first attempt may
have succeeded, and the subsequent attempts are duplicates. Please try your
account before re-registering if this might be the case.

If such an entry is not available in the Name and Address Book, the data
of the request document are used to build a new entry in the Name and
Address Book of the server, to add the user to a group, and to create a

364 Lotus Notes Release 4.5: A Developer’s Handbook

document using the form Person in the database. For housekeeping reasons
the field AgentStatus in the request form is set to “Successful,” and routine
WriteFinalAgentData sets field State in the request document to “D,” for
Done.

Sending Error Messages to Web Users
During the processing phase of the request documents the field SendMailTo
is set either to the E-mail address entered on the request form or to the
E-mail address of the owner of the Notes server. If the authorization
process ends without an error the field SendMailTo is cleared. Furthermore,
there is another hidden field on the request form called MailSent which has
the initial value “N,” for Not sent. A second agent called Send Problem Mail
runs on new or modified documents. It picks up all documents which meet
the following condition:

doc.HasItem("SendMailTo") And _
doc.SendMailTo(0) <> "" And _
 doc.MailSent(0) = "N"

For each of the documents the subroutine SendProblemMail is carried out.

Sub SendProblemMail (req As NotesDocument)
 Dim email As NotesDocument

 Set email = New NotesDocument(db)
 email.Form = "Memo"
 email.SendTo = req.SendMailTo
 email.Subject = "Problem with request: " &
req.AgentStatus(0)
 email.SaveMessageOnSend = False

 Dim bodyItem As NotesRichTextItem
 Set bodyItem = email.CreateRichTextItem("Body")
 Call bodyItem.AppendText("There was a problem
with your " & _
 req.Form(0) & " request: " &
req.AgentStatus(0) & ".")
 Call bodyItem.AddNewLine(2)
 If req.Message(0) <> "" Then
 Call bodyItem.AppendText(req.Message(0))
 Call bodyItem.AddNewLine(2)
 End If
 Call bodyItem.AppendText("If you need help, " & _
 "send mail to " & helpEmail$ & _
 ". Include the text of this message, " & _
 "and the problems you are experiencing.")

Chapter 15: Domino: Sample Applications 365

 Call bodyItem.AddNewLine(1)

 email.Send(False)

 req.MailSent = "Y"
 Call req.Save(False, True)

End Sub

Handling Password Change Requests
To let a user change the password over the Web, a similar concept is used.
In this case a request document is created which causes the agent Handle
Requests to branch to subroutine HandleChangePassword. This subroutine
performs the update of the Name and Address Book.

Summary
This section discussed a sample of how to register Web users for
Domino-based applications where users can create accounts for themselves.

Caution This sample is designed to allow anyone with Web connectivity
to your server to create a user name and password for themselves on your
server. This will not allow them to use Notes to access your data, but it will
allow them to use their Web browser through Domino to access and
possibly change data. Be very careful in deploying this application or
modified versions of it. This application modifies your Public Name and
Address Book, which could, in certain circumstances, compromise security.

Caution If many of your application ACLs are set to default reader access,
any Web browser will also be able to access them. Protect confidential
databases from Web users by setting the Anonymous user to No Access.

Personal Agents — The Page Minder Agent
Today the World Wide Web provides you with abundant sources of
information. While browsing the Web you will certainly find Web sites
which are of interest to you. In order to be informed about the latest status
on these pages you have to retrieve them now and then to check if they
have been updated. This task can be very time consuming. To save time
you can use the Page Minder agent included in the Personal Web database,
to do the job automatically.

Using the Web Navigator Database
Note The following example assumes that you have selected Notes as your
Web browser in your location document.

366 Lotus Notes Release 4.5: A Developer’s Handbook

When you open a URL, Notes retrieves this URL and displays the Web
page. All Web pages you have accessed are listed in the view All Documents.
If you are interested in a specific page and you want Notes to check
whether this page has been updated or not, you should put this Web page
into the folder Page Minder.

All documents in this folder will be processed by the Page Minder agent.

The Settings for the Page Minder Agent
The purpose of this agent is to monitor specific Web pages and inform the
current user or whoever is listed in the Internet Profile by sending a
newsletter summary or the changed Web page.

To see how this agent works let us look at the parts of the Internet Profile,
stored in your Personal Web database, which are related to the Page
Minder agent:

Chapter 15: Domino: Sample Applications 367

In the field labeled Search for updates every: you specify the frequency for
this agent, this means how often this agent will run. You may have the
agent scheduled every hour, every 4 hours, once a day, or once a week.
The field When updates are found: is used to tell the agent in which way it
should send the information to the user whose Notes E-mail address you
specify in the field Send to: — send a summary or the whole page. Once you
have made your choices, click on the button Enable Page Minder and save
the Internet Profile.

Caution If you have chosen to retrieve Web pages from your workstation
don’t forget to enable agents to run on your workstation in the
File - Tools - User Preferences menu.

The Page Minder Agent
The following section will look in more detail at the implementation of the
Page Minder agent. The agent is written in LotusScript. The code is split
into the following parts:

Declarations

Here you find the declaration statements for globally used variables.

Initialize

This is the main routine of the agent. Notes will transfer control to this
part of the LotusScript program when it invokes the agent.

LocationOK

This function verifies that the current locations settings are correct for
local Web retrievals.

NeedToRun

This routine checks whether the agent should be executed or not.

MindURLs

This subroutine performs the test on each document in the page minder
folder to see if the document has changed.

HasDocumentChanged

This part contains a function which is used by subroutine MindURLs. It
determines if a specific Web page has changed.

RetrieveOverInternet

This is the subroutine which contains the LotusScript statements to
retrieve either the Last Modified date from the HTTP header of a Web
page or the complete Web page.

Let us step through the code of this agent and look at some important parts.

Tip Print out the Agent script using the File-Export menu while editing the
agent so you can have the code to look at as we describe the functionality.

368 Lotus Notes Release 4.5: A Developer’s Handbook

Initialize
This part is used to set up the working environment for the agent. The
variables to hold the information about the Notes session, the agent’s saved
data document, the database, and the agent itself are initialized at the
beginning. Next, the test to see if the current location is set up correctly
(Function LocationOK) is performed. If this test is passed successfully, there
are checks to see if the Web database is available, if the Page Minder folder
is accessible, if there are documents in the Page Minder folder, and if there
is an Internet Profile document in the database. If these tests are passed
successfully, the agent’s run frequency, the e-mail address, and the method
of sending the results are retrieved. If the function NeedToRun indicates that
the agent should be executed the subroutine MindURLs is called.

LocationOK
First, all address books are scanned to find the private one which must
contain information about the Internet settings of the current location. If an
entry for the current location is found checks are performed to see if Notes
is selected as Web browser and if the location is set up for local Web
retrievals.

NeedToRun
This function parses parameters containing the time-stamp detailing the
time the agent was run the last time and the frequency as specified in the
Internet profile. Since changes to the frequency in the Internet profile do not
affect the schedule settings in the agent’s design, Notes will schedule this
agent every 30 minutes. It is the up to the agent to determine if it is time to
process the Web pages or not. Therefore, the return value of this function
indicates whether the agent continues or not.

MindURLs
Depending on the parameter this subroutine will send a summary of all
changed Web pages to the Notes user or it will send the changed Web
pages. For each document in the Page Minder folder there are tests for the
existence of URL information in the document and if the document has
changed. If the function HasDocumentChanged returns True the appropriate
Web page is retrieved from the Web and put into the folder Page Minder.
Next, the document is sent to the Notes user or the URL of the retrieved
document is added to the summary list.

HasDocumentChanged
The purpose of this function is to determine if a Web page has changed. To
determine this, the Last-Modified date of the Web page is retrieved from
the HTTP server.

Chapter 15: Domino: Sample Applications 369

RetrieveOverInternet
This function handles all calls to the Internet. It either gets the
Last-Modified information or the Web page. It also covers the different
access methods to the Web, for example using a proxy.

If this agent is enabled, it will run periodically on the workstation and keep
all documents in the Page Minder folder up-to-date.

Case Study: Millennia Multimedia

The following case study makes use of Domino’s document publishing,
Web user interaction and search capabilities.

Millennia Multimedia wishes to publish details of their courses onto the
Internet using the Notes HTTP server. Currently a lot of their course
information is held in an Oracle database that they use to produce billing
information. They would like to be able to still use the Oracle database but
leverage the power of Notes to attract new customers from the Internet.
Additionally, they would like to be able to offer visitors to the Web site the
ability to register for a course automatically.

NotesPump
NotesPump is used to populate a Notes database with course information
from the Oracle database and to take values from the Web course
enrollment forms back into Oracle. For a description on how NotesPump
was set up to do these tasks, see the NotesPump chapter in this book. For
the purpose of this case study we will only look at data that is stored within
Notes.

The diagram below shows from a top level view how users visiting the Web
site will be able to enroll in a course. Starting from the home page they will
be able to view the current course schedule and look at each one to
determine which would be suitable to them. When the users click a button
on the form used to enroll in a particular course, they are presented with a
form that they must complete with personal information such as their name
and address, how they would like to pay, their occupation etc. The form is
stored in Notes and passed back into Oracle using NotesPump. After
Oracle processes each new form a confirmation note is sent to the users’
E-mail address detailing their course enrollment information.

370 Lotus Notes Release 4.5: A Developer’s Handbook

The user is also able to search the site for a particular course by using a
search form. These search queries are stored as documents in Notes and are
used by an agent running on the Notes server to provide statistics on the
number of searches per course.

The Start
First, you need to create a new database which will contain the pages you
are going to display onto the Internet.

1. On your desktop, choose File - Database - New or CTRL-N.

2. Select the server where the database will reside, type in a title and a
database name.

3. Select the OK button.

The home page
The start of any Web site is the home page. This is the default page that is
displayed when a person first enters a Web site.

The home page for our case study was created using a graphics program
and then imported into a Notes Navigator as a background bitmap. As the
Notes HTTP server can only display the background bitmap, all the text,
graphics and lines need to be created entirely on the picture.

Chapter 15: Domino: Sample Applications 371

Once the picture is complete, open the database you created in the steps
above.

1. Select Create - Design - Navigator from the menu bar.

2. Open your home page bitmap in your paint program and copy it to the
clipboard. (This will differ depending on the paint program you are
using.)

3. Select Create - Graphic Background from the menu. Your home page
bitmap should appear in Notes.

Note If the colors of your bitmap do not appear correctly, most likely
it is because you have used more than 256 colors.

4. In the areas where you have decided to have buttons or links to other
parts of the Web site/database, you need to add a hotspot rectangle by
selecting Create - Hotspot Rectangle from the menu and dragging it
over the area you wish to designate as a hotspot.

5. Give the new hotspot a meaningful name, such as LinkToCourses.

6. Select an action for the hotspot. If you are linking to a view or another
navigator you can use the Simple Actions to create the link, or if you
need to do something more advanced, click the Formula or Script
buttons and type in the code. For example, in our example the Search
Site hotspot needs to create a new document, so the formula entered for
the hotspot is @Command([Compose]; “SearchSite”).

7. Repeat these steps for each hotspot that you need to create on your
navigator.

8. When you are ready, select File - Save from the menu.

Course View
This view is used to display a list of course titles that the company offers.
Selecting one of the courses will give the user a description of the course
contents.

This is a simple view containing two columns, the first the course name and
the second the course description.

At the top of the view are three action buttons.

1. Show Course Schedule. This button links the user to the Course
Schedule view that shows details on when and where a course is being
held. The action button formula is @Command([OpenView];
“ClassSchedule”)

372 Lotus Notes Release 4.5: A Developer’s Handbook

2. Course Search. This button links the user to the Search Site form that
will allow them to search for when a particular course is being held in a
city. The action button formula is @Command([Compose];
“SearchSite”)

3. Homepage. This button takes the user back to the home page so that
they can select another option.

Tip It is important to give the user a way back to a familiar location
from every page that they see.

Course Form
The class documents are created directly from the Oracle database using
NotesPump.

In the top half of the screen is a subform containing the document title that
will be added to the top of all the forms. Notice that there are some
embedded HTML tags in the banner to make it appear central when viewed
using a Web browser.

The commands to center a paragraph on a page are <Center> your text
</Center>.

Note If you do not put the text in a style named HTML you must enclose
the whole string in square brackets, for example, [<Center> your text
</Center>]

Chapter 15: Domino: Sample Applications 373

These HTML codes now cause us a problem when we are viewing the
database using a Notes client as we will be able to see them as plain text.
What we can do is to look at the user roles of the database ACL to
determine what type of client is viewing the database and use a Hide-when
formula to hide the text if the form is being viewed from Notes.

This formula sets a value of 1 or 0, (true or false), depending on whether it
finds the current user is a member of $$WebClient in the database’s
UserRoles field.

Tip Use this Hide-when formula to hide HTML tags from a Notes client.
@If(@IsMember(“$$WebClient”;@UserRoles); 0;1).

The top four fields on the form describe what the course is about with some
additional fields that are key fields to the Oracle database. When you
display this information to a Web user you do not want to present them
with all the information here so we create two new fields, ViewTitle and
ViewDesc that are computed when displayed fields.

374 Lotus Notes Release 4.5: A Developer’s Handbook

This is how the page looks from a Web client.

At the top of the page are three action buttons.

1. Previous. This button will take the user to the previous document in the
view. If there are no more documents then the view is re-displayed.

2. Homepage. This button takes the user back to the home page.

3. Next. This button will take the user to the next document in the view. If
there are no more documents then the view is re-displayed.

Class View
The class view contains all the information about when and where a course
is being held.

Chapter 15: Domino: Sample Applications 375

This is how the view is displayed when using a Web client.

Note Background view colors, column heading colors and font sizes are
translated when viewing through a Web client.

Clicking on one of the links will take you to the Class Form.

Class Form
The class form displays to the user all the details for a particular course:
when it is being held, who is running it, where it is being held, how much
it is, etc.

376 Lotus Notes Release 4.5: A Developer’s Handbook

The above figure shows how the form looks when it is displayed in edit
mode. When the form is opened in read mode we use two additional
fields that are set to be computed when composed to display the same
information in a friendlier manner. The first field simply displays the name
of the course, and the second displays a text paragraph made up from the
various fields on the form. As a Web client will be viewing this form in read
only mode, this is what they see.

The formula for the second paragraph is:

@If(@IsNewDoc; ""; "The course will be run from the " +
@Text(StartDate) + " to the " + @Text(EndDate) + " by " +
Teacher + " in " + City + ", will be conducted in " +
Language + " and will have a maximum number of " +
@Text(Limit) + " students. The cost of the course is " +
@Text(Price) + " " + Currency + " which can be made payable
by credit card. If you wish to enroll on this course, click
the button marked \'Enroll Me\' above.")

At the top of the form are four action buttons.

1. Previous. This button will take the user to the previous document in the
view. If there are no more documents then the view is re-displayed.

2. Enroll Me. This button will compose a new Web Enrollment form for
the user to supply personal information so that they can register for a
course. The formula for this button is @Command([Compose];
“WebEnroll”);

3. Next. This button will take the user to the next document in the view. If
there are no more documents then the view is re-displayed.

4. Homepage. This button takes the user back to the home page.

Chapter 15: Domino: Sample Applications 377

Web Enrollment Form
This form is used to gather enrollment related information from the user.
The only place that this form can be created is from the class schedule form
as it needs to inherit several fields from this document.

To enable field inheritance from document to document, check the box
shown above in the Forms InfoBox.

If we open the form in design mode, this is what we see:

At the top of the form are a number of hidden fields that are mostly
inherited from the class schedule form, including two new fields,
CheckBooking and HasPaid.

The HasPaid field is used at a later date by the Oracle database for billing
purposes.

The CheckBooking field is used to determine how many places are left for the
course taking into account the number of places already booked. Here is the
formula used:

@If(@IsError(@DbLookup("":"NoCache"; ""; "(Booking
Available)"; ClassID; 2)); 0; @Elements(@DbLookup(
"":"NoCache"; ""; "Available"; ClassID; 2)))

378 Lotus Notes Release 4.5: A Developer’s Handbook

First the formula checks if there is going to be an error when running
this formula. This will occur when no one has yet enrolled in the course.
If this is the case, then a default value of zero is set.

If there is no error then the next part of the formula repeats the
@DbLookUp into a view named (Booking Available) (shown above),
looking for all the occurrences of the ClassID value. This is then
converted into a value by using the @Elements command which returns
the number of items in a string that have a delimiter such as a comma
or colon. In the example above, for course number 5 the @DBLookup
will return the string “1001;1002” which is converted into the value 2 by
@Elements.

The result of this formula tells us how many places have already been
booked for the course, so far.

Chapter 15: Domino: Sample Applications 379

Moving down the form we create a paragraph that is displayed to the user
if there are no places available for the course.

This text paragraph has a hide-when formula so that it is only displayed
when there are no places available.

This checks to see if the value in the field CheckBooking is greater or equal to
the value in the Limit field and sets a value of 1 or 0, true or false.

380 Lotus Notes Release 4.5: A Developer’s Handbook

The following diagram shows how the form looks when viewed from a
Web client if there are no places available for the course.

Assuming that the course has places available the remaining fields on the
form are displayed. Two of the fields are CourseInfo and PlacesLeft which
are informational fields that display a formatted paragraph to the user
telling them what they are booking, when the course is being held, etc. The
formula for this field is:

"Please book me on the " + CName + " course, starting on the
" + @Text(StartDate) + " and ending on the " + @Text(EndDate)
+ ". I understand that if this reservation is confirmed my
credit card will be debited the amount of " + @Text(Price) +
" " + Currency + "."

The PlacesLeft field directly below this tells the user how many places are
available on the course using the formula,

"There are currently " + @Text(Limit - checkbooking) + "
provisional places left on this course."

Chapter 15: Domino: Sample Applications 381

Below these two fields are the fields that the user will fill in with
information about themselves.

You will notice that each of the fields have been placed in a table, and that
the first column has been aligned to the right. When the form is displayed
on a Web client the fields are aligned correctly.

This is how the document looks when displayed with the table.

382 Lotus Notes Release 4.5: A Developer’s Handbook

 This is the document without the table with a Web client and with Notes.

This happens because tabs are not converted into spaces by the Notes HTTP
server.

Tip You can hide the table by removing all the lines from just the top
left cell.

Field Validation
Each field can provide error checking as you would be able to within Notes
by typing a formula into the Input Validation area. If a field fails the
validation within the formula when using a Web client, the @Failure
command is converted into a new Web page with the error text being
displayed.

For example, take the field FName which the user must type in their first
name. It contains the following Input Validation formula.

@If(@Trim(FName) = ""; @Failure("<H1>Error!</H1><H2>First
Name is a mandatory field</H2><HR>
<P>Please press back on
your browser now and re-submit the form");
@Success)

Chapter 15: Domino: Sample Applications 383

This formula will return an error if the field value is blank. To make this
error more presentable to a Web client it includes some HTML formatting
codes. Here is the error code displayed using a Web client.

Field Sizes
Each of the fields on the form is given a default fixed width by adding some
simple HTML code into the Help Description field on the Options tab for
the Field Properties InfoBox.

To set a default width of 30, specify:

[<Size=30>]

To set a maximum number of 15 characters that can be typed into a
field, specify:

[<Size=30 Maxlength=15>]

384 Lotus Notes Release 4.5: A Developer’s Handbook

Towards the bottom of the form is the submit button that is used to save
the form from a Web client to Notes. If you do not provide a button on the
form the Notes HTTP server will generate a default one for you labeled
Submit. The advantage of adding a button yourself is that you can control
the text that is displayed. The button has NO formula behind it.

Finally, there is a field named $$Return. This field can be used by you to
control what the Notes HTTP server does after the form is submitted. By
default, when saving a new form, the message displayed back to the user is
Form Processed which is, perhaps, not the most informative way of telling
the user that their form has been sent. In our example we want to link the
user to another document that has a more informative message. This is the
formula in the $$Return field,

"[http://cinnamon.lotus.com/Millcour.nsf/d2711fa5d4717f028525
639400489e1c/85789efc7e9b028c8525639400487d17?OpenDocument]"

At first glance it looks too complex to understand but it is simply telling the
Notes HTTP server to open a document in a view. The first of the two long
numbers denote to Notes a view name and the second is a document ID
within that view which is opened with the ?OpenDocument command.

Tip The easiest way to code this link to a document is to copy the full URL
from a Web browser. First open the view that the document is in with a
command such as http://cinnamon.lotus.com/Millcour.nsf/TempView?Open
which will open a view named TempView that contains your document
and opens it. Depending on your Web client, you should be able to copy
the full URL of the document onto the clipboard and paste it into your
$$Return field.

The reason that we link to an existing form in the database and not simply
compose a new one, is that when you use the compose function to create a
new document the Notes HTTP server will automatically add a Submit
button to the end of the form which would confuse the user.

Chapter 15: Domino: Sample Applications 385

Thank-You Form
Here is the form that is displayed to the user once they have clicked the
Submit Request button.

This is a very simple form that displays a text message to the user and
displays a link back to the home page. This link is achieved by adding the
following text directly onto the form,

[<A HREF=“http://cinnamon.lotus.com/Millcour.nsf/Home
Page?OpenNavigator”> <H2>Back to the Home Page</H2>] ..

This is an anchor to a Web page using HTML that is sent directly to the
Notes HTML server. This command says, open the Home Page navigator in
the Millcour.nsf file when the text Back to the Home Page is clicked.

Search Site Form
Having now created a workflow where a Web user can visit the site,
browse the information and register for a course if they wish, it would be
advantageous if the user could search for a particular course being held at a
certain location.

386 Lotus Notes Release 4.5: A Developer’s Handbook

This is what the search form is used for. The following is a diagram of the
search form when displayed in design mode.

The form contains two input fields for users to select the course they are
searching for and the location of the course. A $$return field is used to
actually process the search query and a button to initiate the search.

The first field, CourseName is a keywords field that has the following
formula,

@Unique(@DbColumn(""; ""; "Courses"; 1))

This returns a list of all courses currently available from a view named
Courses.

Similarly, the second field, CourseLocation is a keywords field and has the
following formula,

@DbColumn(""; ""; "Location"; 1)

The $$return field has the following formula,

"[http://cinnamon.lotus.com/millcour.nsf/classschedule/?Searc
hView&Query="+CourseName + " AND " + CourseLocation + "]"

which actually submits an HTML request containing the query to Notes.

Chapter 15: Domino: Sample Applications 387

Millcour.nsf is the name of the Notes Database

ClassSchedule is the name of a Notes view within the database

?SearchView is the Notes HTTP server command to initiate a search on
the view

&Query= is the text that you are searching for within the view. In our
example, if we search for the course name Notes Expert and the
location is Basingstoke then the query command becomes,
&Query=Notes Expert AND Basingstoke.

This is how the form looks when displayed using a Web client.

Note Keyword lists become drop-down list boxes when viewed in a Web
client.

The HTML string that is sent to the Notes HTTP Server for the above query
is, http://cinnamon.lotus.com/millcour.nsf/classschedule/?SearchView&
Query=Notes+Expert+AND+Basingstoke. The HTTP server automatically
connects each word in the search phrase with a + symbol.

388 Lotus Notes Release 4.5: A Developer’s Handbook

This is how the resulting search looks after it has been run.

The user can then click on the course name of one of the returned
documents and open it.

Agents

E-mail Reply Agent
After the Web user has registered for a course, an agent is triggered on the
server to send them back an e-mail message, through the SMTP gateway, to
say that they have successfully been registered.

Here is a simplified version of the agent’s code.

Sub Initialize
 Dim db As NotesDatabase
 Dim Message As String
 Set sess = New NotesSession

 Set db = sess.CurrentDatabase
 Set docs = db.UnProcessedDocuments

 For d = 1 To docs.count
 '** Get the next document in the list
 Set doc = docs.getNthDocument(d)
 '** Create a new document to be used the mail
 'document
 Set maildoc = New NotesDocument(db)

 '** Set the Form type to a memo
 maildoc.form = "Memo"
 '** Set the person to send this to as the email
 'address adding the SMTP gateway to the address
 maildoc.SendTo = doc.Email & " @ SMTP"
 '** Set the document title

Chapter 15: Domino: Sample Applications 389

 maildoc.Subject = "Course Confirmation"
 '** Write the body of your text in here.
 maildoc.Body = "Your course reservation has " & _
 "been confirmed"
 maildoc.send(False)
 '** Mark the document as processed (so we don't
 'mail them again)
 sess.UpdateProcessedDoc(doc)
 Next
End Sub

Web-Site Search Summary Agent
When a user visits the Web site and performs a search for a course, the
search request document is stored in Notes. We can use this information to
find out what visitors to the site are looking for and build a picture of the
most common requests.

The agent was triggered to run once a week and send a Notes mail message
to a designated person. Here is the code we used to create this agent.

Option Public
'** Work from base 1 and not 0.
Option Base 1

'** Create our own datatype called searchrec
Type SearchRec
 SearchString As String
 Count As Integer
End Type

Sub Initialize
 Dim db As NotesDatabase
 '** Create an undimensioned array from our SearchRec
 Dim Rec() As SearchRec
 Dim Found As Integer
 Dim rt As NotesRichTextItem

 '** Get the current notes session
 Set sess = New NotesSession
 '** Get the current database
 Set db = sess.CurrentDatabase
 '** Set docs to be an array of docs not processed before
 Set docs = db.UnProcessedDocuments

 '** Dimension the rec array to 1
 Redim rec(1)
 '** Set doc to be the first doc found
 Set doc = docs.getNthDocument(1)
 '** Fill the first array element with data
 '** This tells us that so far we have found one

390 Lotus Notes Release 4.5: A Developer’s Handbook

 '** occurrence of the first text string
 rec(1).SearchString = doc.CourseName(0)
 rec(1).Count = 1

 found = False

 '** Now loop through the remaining documents
 For d = 2 To docs.count
 '** Get the next document
 Set doc = docs.getNthDocument(d)
 '** Check to see if we already have an occurrence
 '** of this search request
 For i = 1 To Ubound(rec)
 If doc.CourseName(0) = rec(i).SearchString
Then
 '** If we do then increment count by 1
 rec(i).Count = rec(i).Count + 1
 found = True
 End If
 Next
 '** If we have not found a copy of this search yet
 '** then it must be a new one.
 If found = False Then
 '** Resize the array, keeping the old contents
 Redim Preserve rec(Ubound(rec) + 1)
 '** Populate our new array element
 rec(Ubound(rec)).SearchString = _
 doc.CourseName(0)
 '** and set the count to 1
 rec(Ubound(rec)).Count = 1
 End If
 found = False
 '** Now delete this document from the database
 doc.remove(True)
 Next

 '** Having now gone through all the documents we have
 '** an array of text strings and a count on how many
 '** times they occured. We now can send a document with
 '** these details to a designated person.

 '** Create a new document
 Set doc = db.CreateDocument
 '** Set the form type to a memo document
 doc.form = "Memo"
 '** Set the person it is to be sent to.
 doc.SendTo = "Dave Morrison/CAM/Lotus"
 '** Set the title for the document
 doc.Subject = "Web Site Search Statistics"

Chapter 15: Domino: Sample Applications 391

 '** Create a link to the Body field.
 Set rt = New NotesRichTextItem(doc, "Body")
 '** Write some text to the body field.
 rt.AppendText("Below is a summary of search's for " & _
 "course names performed on the Domino WebSite.")
 '** Add two blank lines
 rt.AddNewLine(2)

 '** Loop through our array and add a line for each search
 '** word found and how often it was searched for
 For i = 1 To Ubound(rec)
 rt.AppendText(Format(rec(i).Count, "0000") & _
 " occurences of " & rec(i).SearchString)
 rt.AddNewLine(1)
 Next
 '** Send the document.
 doc.Send(True)
End Sub

Below is how the memo looks when it has been sent to the designated
person. An alternative to this memo would be to embed a Lotus Chart
Component into the body field and populate the chart with the data from
the array. For an explanation of Lotus Components, see the chapter on
Lotus Components in this book.

392 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 16
Accessing Relational Database Management Systems
With Notes

This chapter describes tools and techniques that can be used to access data
resources from a Notes application.

The following areas are covered.

LS:DO (LotusScript:Data Object)

@DBCommand, @DBLookup, @DBColumn using ODBC

Oracle LSX (LotusScript Extension)

ODBC in Lotus Spreadsheet Component

All of the above features except for Oracle LSX are based on the Open
Database Connectivity (ODBC) technology.

When you are developing your Notes application, you need to decide what
your data access needs are and which products best meet those needs.
Each product has different functionality as well as performance and
programmability. When you have completed this chapter, you should know
when to use which tool, and how to use it.

Data Resource Access
When you develop a Notes application, you often need to implement data
integration between Notes and other data resources such as RDBMS,
spreadsheet data, and ASCII delimited text files. In enterprise Notes
application development, this becomes even more vital as you will surely
have to integrate legacy database resources in your design.

About the Database Access Facilities
The following tools enable Notes applications to connect to data resources
through ODBC or native database access.

1. LS:DO (LotusScript:Data Object)

This is a LotusScript Extension (LSX) which provides additional
LotusScript classes for accessing other data resources via ODBC.

393

2. @DBCommand, @DBLookup, @DBColumn using ODBC

These are @functions for ODBC data access. The functions @DBLookup
and @DBColumn are frequently used to access Notes databases as well
as ODBC-compliant databases.

3. ODBC access through the Lotus Spreadsheet Component

This feature is used by the Lotus Spreadsheet Component.

4. Oracle LSX (LotusScript Extension)

This is a set of LotusScript classes which provide native access to Oracle
RDBMS without using ODBC.

There may be both ODBC and native tools for one back-end database such
as an Oracle database. Which one you use depends on your choice
according to functionality and performance of the particular tool.

The following table shows the characteristic differences between the tools:

LS:DO @DBLookup
@DBColumn

@DBCommand Spreadsheet
Component

Oracle
LSX

Based on
ODBC

X X X X

Available in
LotusScript

X *2 *2 X X

Has a Class X X X

Read Only X X *1

OCX X

64KB Data
Limit

X X

Note *1 SQL statement can be specified, but the “Select” statement is
usually used.
*2 Technically, LotusScript can perform @Functions under the Evaluate
function.

Furthermore, we must consider some ease of use versus programming
functionality and flexibility. For example, @Functions are useful to retrieve
small data on the fly without complex sequences, but they are limited in the
number of ways to access data.

LS:DO can be used in more complex situations with much more flexibility
from a programming perspective, for example, result set handling to read
and update records queried by SQL. LS:DO is also easy to use if you are
familiar with LotusScript.

394 Lotus Notes Release 4.5: A Developer’s Handbook

Study the following picture to decide which tool is most appropriate.

LotusScript:DataObject (LS:DO)

What Is LS:DO?
The LotusScript:Data Object (LS:DO) provides full read and write access to
external ODBC data sources using the complete control and flexibility of a
structured programming language: LotusScript.

The LS:DO consists of a set of three classes: ODBCConnection,
ODBCQuery, ODBCResultSet. These classes come complete with a
powerful set of properties and methods and full SQL capabilities. Yet at
the same time, the LS:DO is easy to learn and use because its design is
consistent with LotusScript’s BASIC syntax and other LotusScript Notes
classes.

Concepts
The LS:DO is available on both the Notes client and the Notes server.
LS:DO is excellent for real-time data access from any LotusScript event in
Notes, such as clicking a button, exiting a field, or opening a document.
LS:DO real-time data access is the best choice for the following:

Relationship among Data Access Features

Programmability/
Flexibility

E
as

y
to

 U
se

@
Function

LS:DO
ODBC

Spread
Sheet

Chapter 16: Accessing Relational Database Management Systems With Notes 395

Optimizing data entry
On-the-fly lookups
Immediate updates
Input validation
Avoiding duplicate entries

Mobile user queries and updates

Optimizing Data Entry
Many designers use Notes as the data entry point for an application, which
may synchronize that data with a DBMS or use the DBMS for long-term
data storage and archiving. The LotusScript Data Object can provide the
following functionality on the fly:

On-the-fly look up
Once a user enters a customer name and exits the field with the TAB
key or a mouse click, LotusScript code can immediately perform an
SQL query to one or several external back ends, retrieve the customer
record matching that name, and fill the remaining fields in the form,
such as address, city, phone, and contact name.

Immediate updates
LotusScript gives you the flexibility to update the information in the
relational DBMS the moment the user saves a new document in Notes
or in batches at scheduled intervals. When another document is created
in Notes, you can be sure that document will access the most current
information in the relational DBMS.

Input validation
Is the right salesperson assigned to that customer in the Notes form? Is
the regular salesperson for that region currently overloaded with
assignments, indicating that a backup person should be assigned to the
task? The LotusScript Data Object can retrieve that information from
the DBMS that indicates these conditions, and LotusScript’s fully
structured programming constructs enable you to evaluate that data
and act accordingly.

Avoiding duplicate entries
Once a user enters a customer’s name, the LS:DO can query the back
end for variations on that customer name, for example, to ensure that
the same customer is not entered with an “Inc.” as opposed to a “Co.”
in the DBMS.

Mobile User Queries and Updates
One of the most exciting results of the intersection between DBMSs and
Notes is that the mobile Notes user can take their access to the DBMS with
them on the road. For example, when a sales representative is on the road,
they often find themselves with last-minute opportunities to visit customers

396 Lotus Notes Release 4.5: A Developer’s Handbook

in different cities. If they are on the road and if that customer information is
contained in the mainframe DBMS, they are forced to call someone in the
office, and ask them to look up the information, which is out of the question
from a hotel room outside business hours.

The LotusScript Data Object’s ability to run on Notes servers as well as
clients, coupled with Notes native replication capabilities, solves the
problem. With an integrated Notes/DBMS application, a user can do the
following:

1. Compose a query request within an application on their mobile Notes
client, such as “What are the customer contacts and activity in this
city?”

2. Replicate the query to the Notes server, where a waiting LS:DO agent
sees the new document, authenticates and performs the query, stores
the results in that document, and saves it.

3. Replicate the query results back to their laptop in moments, even
during the same dial-up connection if they choose, for analysis and
review.

Architecture
In addition to allowing users to issue SQL statements to relational DBMSs,
the LS:DO also offers data manipulation capabilities. The LS:DO supports
and manages result sets as well as provides an interface for directly using
SQL when appropriate. The result set management takes the form of
caching result sets, supporting navigation through the result set, and
managing individual row updates regardless of the underlying driver’s
cursor or ODBC conformance capabilities.

The following diagram is a schematic representation of the components in
the LS:DO framework that allow a Notes application to access a database:

ODBC
Driver

Manager

ODBC
Driver DB

LS:DO
Connection
Query
ResultSet

Notes IDE

LSX

LotusScript

Chapter 16: Accessing Relational Database Management Systems With Notes 397

When to Use LS:DO
The LS:DO is best suited to handle the following situations:

LotusScript programming environment

If you develop an application with the LotusScript environment, you
can easily utilize ODBC access through LS:DO classes.

Low-volume data transfer

LS:DO is more suited for low volume access to data resources. From a
performance perspective LS:DO is not well suited to moving large
volumes of data.

Easy data access

When your application needs to both read and update data in an
RDBMS, LS:DO is an easier way than the ODBC API or the
@DBCommand because of the classes allowing you to work with result
sets.

Real-time direct access

LS:DO is integrated directly in a Notes application and so on.

What Is ODBC?
The ODBC (Open Database Connectivity) standard is a set of functions
established by Microsoft to access Relational Database Management
Systems like Oracle, DB/2, Informix and others. There are two software
components required to use ODBC:

1. ODBC Driver Manager

This manager is a set of APIs in the ODBC dynamic link library. Those
APIs are called by client programs like LS:DO, NotesSQL, and so on, in
order to access an RDBMS via ODBC.

2. RDBMS ODBC driver

The specific ODBC driver for an RDBMS. For example:

Oracle ODBC driver

NotesSQL ODBC driver

Desktop Database Driver

The ODBC driver allows you to issue any SQL statements in DDL (Data
Definition Language), DCL (Data Control Language) and DML (Data
Manipulation Language) using SQLExecute or SQLExecDirect with the
ODBC API.

In addition, other ODBC Drivers enable you to get information about
columns attributes, index, privileges of column, drivers, foreign keys of
tables, and other RDBMS entities.

398 Lotus Notes Release 4.5: A Developer’s Handbook

Using ODBC Connections
There are two ways to use ODBC:

1. You can use ODBC APIs in your C, C++, Basic, LotusScript, or any
other programming language programs.

Note The programming language you use must support calls to a DLL
(Dynamic Link Library) as all of the ODBC functions are in the ODBC
DLL.

2. Use ODBC compliant high level tools such as LS:DO, Lotus
Spreadsheet Component in LotusScript, and Data Access Object in
Visual Basic.

ODBC Access Flow
The process by which a program accesses a database through ODBC is
shown below:

1. The program makes a call to the ODBC API.

2. The ODBC driver manager parses the requested command.

3. The ODBC driver manager decides which ODBC driver is required
according to database resource information registered in advance
through the operating system.

4. The requested command is passed to the specific ODBC driver for the
database being accessed.

5. The ODBC driver composes a series of commands for the particular
RDBMS and sends them to the RDBMS.

6. The results, if available, are sent back to the calling routine.

RDB

API Call
Client

ODBC
Driver

Manager

ODBC
Driver

RDBMS

Data
Resource

Registration

LS:DO
Spreadsheet
Components, etc.

Oracle
DB2, etc.

NotesSQL ODBC Driver
Oracle ODBC Driver
DB2 ODBC Driver, etc.

ODBC.DLL
ODBC32.DLL

Chapter 16: Accessing Relational Database Management Systems With Notes 399

There are many ODBC drivers. Usually they are provided by RDBMS
vendors but others come from independent software vendors like InterSolv
or Visigenic.

The following figure conceptually shows how LS:DO makes connection
paths to RDBMSs as an example. It also shows other ODBC drivers which
are capable of accessing ASCII delimited Text files, Spreadsheets and other
types of data resources rather than RDBMS.

Note There are two types of ODBC driver managers in the Windows
environment: the 16-bit ODBC driver manager and the 32-bit ODBC driver
manager. You must ensure that the one you use matches the application
evironment you are in. For example, when you use the 32-bit Windows
version of Lotus Notes, you need a 32-bit ODBC driver manager and a
32-bit RDBMS driver.

Difference Between LS:DO and ODBC
LS:DO is a high-level abstraction of the ODBC feature, which enables you to
make more complicated operations toward RDBMS, but requires more
detailed knowledge about the ODBC architecture and ODBC APIs. Let’s
look at three aspects of both methods:

Programming Environment

Functionality

Performance

Notes
DLL

Notes

LS:DO

Oracle
Server

SQL*Net
Client

ODBC
Driver Manager

...NotesSQL DB/2 Text FileAccessOracle Excel

ODBC Driver

DB

DB Text DB
DDCS/2,
CAE/2

Network Network Network

DB

DB
Notes
Server

SQL*Net
Listner DB

Oracle
Server

DB/2 DB

DB/2 DB

400 Lotus Notes Release 4.5: A Developer’s Handbook

Programming Environment
Calling ODBC APIs requires passing many arguments. You have to be
careful with the different argument types. A wrong argument type may
cause unexpected severe errors and may make your system unstable.
The LS:DO is more intuitive and at a higher level of abstraction. Also, the
LotusScript development environment checks syntax on the fly.
LS:DO is available only in LotusScript and some development
environments which are compliant with OLE clients, such as Visual Basic.
LS:DO is one of the LotusScript Class Libraries (LSXs). This enables you to
benefit from the object-oriented and event-driven programming
environment provided by the Notes Integrated Development Environment.

Functionality
Through LS:DO classes, you can update data in a result set, which is then
automatically reflected to the original table. It is much easier to update data
using LS:DO methods than using an SQL statement.

ODBC functions are calls from C or C++ programs to the Dynamic Link
Library. There are three conformance levels: Core Level, Extension Level 1,
and Extension Level 2. There are more than 50 functions depending on the
version number of the ODBC driver manager and the ODBC driver.

The following table conceptually shows which method in LS:DO calls which
ODBC APIs. Each LS:DO method corresponds to a combination of some
ODBC APIs:

Functions LS:DO Method ODBC API

List all data sources
registered

Connection.ListDataSources SQLAllocEnv
SQLDataSources
SQLFreeEnv

Establish a
connection to DB

Connection.ConnectTo SQLAllocConnect
SQLBrowseConnect
SQLFreeConnect
SQLAllocConnect
SQLConnect

List all tables in
a database

Connection.ListTables SQLAllocStmt
SQLTables
SQLFetch
SQLGetData

Execute an SQL ResultSet.Execute SQLSetStmtOption
SQLExecDirect

Fetch data from a
result set

ResultSet.GetValue SQLNumResultCols
SQLColAttributes
SQLFetch
SQLGetData

Chapter 16: Accessing Relational Database Management Systems With Notes 401

Performance
ODBC provides better performance than LS:DO in some cases because the
C++ program can directly access the ODBC driver manager, whereas
LS:DO has some overhead due to the language architecture. Although
LS:DO can make it easy to retrieve and update records in a result set,
ODBC API calls are more powerful allowing the use of more complex and
efficient record data handling using fetch and retrieve of records,
parameterized SQL, and cursor features.

Software Requirements
The software requirements are:

ODBC driver manager 2.0 or later.

You need to install the appropriate ODBC driver manager as required
by your operating system and by the applications that use the ODBC
features.

The 32bit ODBC driver manager comes with Visual Basic 4.0, Lotus
SmartSuite 97, Office95, Visual C++ 4.0, and others.

The 16bit ODBC driver manager comes with Windows 3.1 and
Windows 95.

ODBC drivers for specific RDBMSs.

For example, if you create a program to access the Oracle DB server,
you must install an Oracle ODBC driver which corresponds to the
ODBC driver manager type already installed.

There are many drivers provided by many software companies for
RDBMSs and other data resources as well.

Some of them are listed in the following table.

Microsoft Intersolv Visigenic Lotus

Notes X

1-2-3 X

Access X

DB2 X X

dBASE X X*1

Excel X

FoxPro X

Informix X X

Ingres X X

continued

402 Lotus Notes Release 4.5: A Developer’s Handbook

Microsoft Intersolv Visigenic Lotus

SQLServer X

Oracle X X X X*1

Paradox X

Sybase X X

Text File X X X*1

Note *1 This driver is bundled in Lotus Smartsuite.

How to Register ODBC Data Sources
To register ODBC data sources, follow these steps. Our example is based on
an Oracle DB Server connection for Windows 95. The basic operations are
practically the same on the other platforms.

1. Double-click the ODBC driver manager icon in the Control Panel.

Note The above icon image and icon title depend on the driver
manager you installed on your system.

2. The Data Sources dialog box displays. You can see all data sources
previously defined. To add a new data source, click the Add... button.

Chapter 16: Accessing Relational Database Management Systems With Notes 403

3. The Add Data Source dialog box displays. You can see all the ODBC
drivers installed on your PC. Select the ODBC driver for your
application and click OK. In our example, we selected the Oracle 72
ODBC driver:

4. If you select the Oracle ODBC driver, you’ll need to fill in the
appropriate information as follows. This dialog box will vary
depending on the driver you choose.

The Data Source Name you enter will be the one you specify in your
programs, such as the ConnectTo method in LS:DO, whenever you
connect to the Oracle Database.

The Description field is just an explanation for this data source.

The SQL*Net Connect String is important to establish the connection.
In our case, the “T” means that the TCP/IP protocol is used during
communication. The rest of the string “OracleITSO” is a TCP/IP
hostname for the Oracle DB server on Windows NT. Optionally, you
can specify the Oracle instance ID here. For a full description and
different connect string examples, click on the Help button of the
Oracle7 ODBC Setup dialog box.

404 Lotus Notes Release 4.5: A Developer’s Handbook

USELSX Statement to Enable LS:DO
The following statement must be specified in the Define (Globals) Event
(Declarations) within Lotus Notes.

Uselsx "*LSXODBC"

Note The leading “*” tells LotusScript to use the class registry to
look up the path of the LS:DO dynamic library being loaded. This is a
platform-independent way of loading LS:DO since each operating system
uses different methods.

Mapping Data Types Between RDB and Notes DB
The following diagram shows the data type mapping between an Oracle
database and a Notes database through the LS:DO:

How to Trace and Debug LS:DO
In this section, we will briefly touch on a few ways to debug and trace
applications that employ the LS:DO.

The structure for a connection between a Notes application using the
LS:DO and the target RDBMS is the same as in all ODBC-compliant
systems. The following diagram shows each connection layer and the

BIT

CHAR

RAW

NUMBER

LONGRAW

LONG

FLOAT

DATE

CHAR

VARCHAR2

VARCHAR
NUMERIC

DECIMAL

INTEGER

SMALLINT

FLOAT

REAL

DOUBLE

DATE

TIME

TIMESTAMP

VARCHAR

BINARY

VARBINARY

LONGVARCHAR

LONGVARBINARY

BIGINT

TINYINT

DATETIME

SHORT

BOOL

BINARY

LONG

DOUBLE

CHAR

TIME

DATE

VARIANT

INTEGER

BOOLEAN

LONG

SINGLE

STRING

DATETIME

DOUBLE

CURRENCY

Oracle7 FieldExpectedDataType Notes
FieldNativeDataType

Chapter 16: Accessing Relational Database Management Systems With Notes 405

respective component. If a connection cannot be established for some
reason, the configuration of each of the components must be verified one
by one. The appropriate debugging or tracing tool is indicated by the
caption circle for each component.

Using the ODBC Trace Option
Trace information issued by the ODBC API can be gathered using the trace
function in the ODBC Administrator program. To do this, follow these
steps:

1. Run the ODBC Administrator program and click Options....

Oracle DB Server

SQL*Net

TCP/IP

Network

SQL*Net

TCP/IP

RDBMS

Network Protocol

Database Protocol

Network Protocol

Database Protocol

Oracle ODBC Driver

LS:DO

ODBC Driver ManagerDriver Manager

ODBC Driver

ODBC Client

Notes ApplicationApplication

PING

TNSPING
SQL*PLUS

ODBC Trace

LS:DO Tool

ODBC Test

provided in this book

406 Lotus Notes Release 4.5: A Developer’s Handbook

2. Select the Trace ODBC Calls checkbox. Click OK, and leave the ODBC
Administrator program.

Trace descriptions of the ODBC API calls in your program(s) using
LS:DO are saved in the “C:\sql.log” text file as a default. You may
change the log file name by clicking the Select File button in the dialog
box above. An example of some of the trace output is shown below:

SQLAllocConnect(henv004993F0, phdbc00483E0C);
SQLConnect(hdbc00483E0C, “dBaseDB1”, -3, “”, -3, “”, -3);
SQLGetInfo(hdbc00483E0C, 11, rgbInfoValue, 4, pcbInfoValue);
SQLGetInfo(hdbc00483E0C, 21, rgbInfoValue, 4, pcbInfoValue);
SQLAllocStmt(hdbc00483E0C, phstmt00488110);

Using the ODBC Test Tool
If you are using the Microsoft ODBC driver SDK, you can use the ODBC
Test tool which allows you to issue ODBC API function calls. In the
following example, we will test whether the connection to the database is
configured properly and, if so, try other calls to debug each of the layers.

1. Double-click the following icon to start the ODBC Test program.

Chapter 16: Accessing Relational Database Management Systems With Notes 407

2. Choose Connect - Full Connect from the menu bar.

3. You are prompted for the connection specifics. From the list box,
choose the Data Source you want to test the connection to. These are the
data sources you specified with the ODBC driver manager. In our
example, we chose the Millennia Oracle7 instance data source. If
security is enforced, you must specify the User ID and/or a password.

408 Lotus Notes Release 4.5: A Developer’s Handbook

4. You will see the results of the connection. If successful, you can select
from the other ODBC API function calls from the menu to test the
functionality of the connection and the results of the calls:

Creating Your Own LS:DO Test Application
To test the functionality of your LS:DO configuration you can build your
own test application.

The goal of the tool is to provide a graphical interface which allows you to
select a database name, a table name and column names which you want to
check the values for. The tool returns the records in the table to a field in a
form which can be stored and displayed in a view.

This tool allows you to take a deeper look at LS:DO function calls and
behavior. It is meant to give you a starting point from which you can debug
your LS:DO code and environment. You may want to make it more robust
by adding more functionality like error handling routines, appropriate error
messages, and consistency checking routines.

Chapter 16: Accessing Relational Database Management Systems With Notes 409

The following figure shows the flow of data in the application which
dynamically populates a keyword list using the Keywords form. A
keyword list document is created from a DataList document. The created
keywords are retrieved using the @DBLookup function.

Form Design of the LS:DO Tool
The following figure shows the form design of our LS:DO tool. The
application is based on a Keywords form. It has four fields to indicate the
lists of selections and the results. Here are the field definitions:

DBName is a keyword list field in which a database name can be
selected and displayed as an option button list.

TBLName is a keyword list field in which a table name can be selected
and displayed as a combo box which is located in a layout region.

ColumnName is a keyword list field in which column names can be
selected and displayed as a check box list. Any column names you want
can be chosen.

CValue is a text field in which all the records composed of all the
columns selected are displayed. Be aware that the size of a text field is
limited to a maximum of 64KB.

TableName Field

@DBLookup

DataList Document Keywords Document

KeyName

KeyWords

Create

Lookup

410 Lotus Notes Release 4.5: A Developer’s Handbook

The field properties are set using the following InfoBox to provide a
multi-column 3D check box interface. Also, make sure you select the two
check boxes provided on the Keyword options tab of the InfoBox.

The following steps show you how to use this tool:

1. Create a document with the DataList form.You will see a database
name list with option buttons to choose from the list:

Chapter 16: Accessing Relational Database Management Systems With Notes 411

2. Choose dBaseDB1 as a sample database. A dialog box displays that also
contains a Table List combo box:

3. Drop down the list of available options. A list of database table names
is displayed:

412 Lotus Notes Release 4.5: A Developer’s Handbook

4. The Exiting event of the Table List keyword field is a trigger to
populate the Column List which is presented next as a check box list:

5. Select some column names which you want to retrieve. In our example,
we are accessing the Millennia course table, and we would like to
retrieve the columns COURSE_NO, DEPT, NAME. The Get Column
Value button is displayed right after selecting one of the column names.

6. Click the Get Column Value button to retrieve the columns:

Chapter 16: Accessing Relational Database Management Systems With Notes 413

7. You will see the query results in the Value List field. In our example, six
records were retrieved:

8. Save the result of your query into a document. You can check it again in
the DB Data view. The document is displayed as multiple lines
according to the number of records that were retrieved.

414 Lotus Notes Release 4.5: A Developer’s Handbook

LS:DO Class Library
The classes that make up the LotusScript:Data Object provide you with the
following benefits:

Connection sharing

Connections are cached to avoid the added overhead of establishing a
connection. In addition, since it is defined as an independent object, one
connection object can be used by multiple LotusScript SQL calls.

Multiple query and result sets

You can define multiple query objects to generate multiple result set
objects which can all be executed against the same connection, and
manipulated from the same script.

Bi-directional scrolling over result set

The ODBCResultSet object provides a scrolling cursor with methods for
navigating to the next, previous, first and last rows.

Result set search

The LocateRow method of the ODBCResultSet object provides the
ability to search for specific rows within the result set based on
specified criteria. This search capability executes faster than multiple
queries or comparing values from multiple rows in LotusScript.

Cached results

The query result in the ODBCResultSet object is optionally cached in
memory (default setting), so it can be later accessed by other events in
the form, increasing performance and reducing DBMS connection time.
In addition, the cached result set gives you the ability to later locate
records using LocateRow.

Update services

Updates to back-end DBMSs through a generic ODBC interface are
limited to SQL statements, where the user must ensure that the row to
be updated contains a unique record reference or can be otherwise
uniquely accessed through a cursor. LS:DO extends this capability by
permitting individual items in a result set to be modified without use of
an SQL statement using the SetValue method. These changes are then
updated to the back end database all at once.

Driver transparency

Although different vendors’ ODBC drivers support varying
conformance levels, the LotusScript:Data Object assesses these
differences and often provides the same level of behavior across all
drivers and databases. The developer does not have to write separate
scripts for separate drivers.

Chapter 16: Accessing Relational Database Management Systems With Notes 415

The following figure represents the manner in which a LotusScript program
would use each class in an application access in a database.

Relationship Among Classes
The three classes in the LS:DO are tightly related to one another as shown
in the following diagram.

Event Handling
If needed, you can create event handling subroutines for some ODBC
methods. An event handling subroutine you create is called according to
the behavior of an appropriate ODBC method, after the On Event statement
is issued.

Connection
Class

Query
Class

ResutlSet
Class

Data
 Sources

Connection

Table
List

Column
List

SQL
Statements

Records
Fecth

Update

DDL
DCL
DML

LS:DO

SQL
Statement

Result Set
Records

LS:DO Classes

ODBCConnection
Object

ConnectTo
method

Execute
method

ODBCQuery
Object

Connection

SQL

ODBCResultSet
Object

Query

416 Lotus Notes Release 4.5: A Developer’s Handbook

In the following example, an event handler, named presub1 is called, before
the ListDataSources method is called.

1. On Event statement

Dim connection As New ODBCConnection
On Event BeforeListDataSources From connection Call
presub1

2. Event handler

Sub presub1(Source As ODBCConnection)
 '** Write your event handling script here
End Sub

Note Your event handler must be in the scope where the event occurs.

ODBCConnection Class
The ODBCConnection class allows you to establish a connection. It also
allows you to access some database catalog information, such as data
source lists, table lists, procedures lists and so on.

Property
The following table shows the properties of the ODBCConnection Class:

Property Data Type Read/ Write Argument

DataSourceName String R

DisconnectTimeOut Integer R/W

Exclusive Boolean R/W

IsConnected Boolean R

IsSupported(option) Boolean R option:
DB_SUPP_ASYNCHRONOUS
DB_SUPP_CURSORS
DB_SUPP_PROCEDURES
DB_SUPP_READONLY
DB_SUPP_SILENTMODE
DB_SUPP_TRANSACTIONS

IsTimedOut Boolean R

SilentMode Boolean R/W

Note Boolean is not a pre-defined data type in LotusScript. But you can
use a constant value (TRUE and FALSE) as a Boolean data type.

Chapter 16: Accessing Relational Database Management Systems With Notes 417

Method
The following table shows the ODBCConnection methods with the
corresponding arguments and events.

Method Argument Return
Value Type

Error
Constant

Event

ConnectTo(source$ [, userID$,
password$])

Boolean DBstsCANF
DBstsSVRQ
DBstsCCON
DBstsACCS

BeforeConnect
AfterConnect
BeforeConnectTo
AfterConnectTo

Disconnect Boolean DBstsNCON BeforeDisconnect
AfterDisconnect
TransactionUpdate

ExecProcedure(name$, arg$) Boolean DBstsNCON
DBstsODBC

BeforeExecProcedure
AfterExecProcedure

GetError Constant *1

GetErrorMessage([error%]) error%:
DB_LASTERROR
or Constants *1

String

GetExtendedErrorMessage([
error%])

error%:
DB_LASTERROR
or Constants *1

String

GetRegistrationInfo(source$) String DBstsCANF

ListDataSources Array of
String

BeforeListDataSources
AfterListDataSources

ListFields([tableName$]) Array of
String

DBstsNCON
DBstsNCOL

BeforeListFields
AfterListFields

ListProcedures([source$ [,
userID$, password$])

Array of
String

DBstsNCON
DBstsACCS

BeforeListProcedures
AfterListProcedures

ListTables([source$ [, userID$,
password$]])

Array of
String

DBstsNCON
DBstsACCS

BeforeListTables
AfterListTables

*1 Error number list is shown in ODBCResultSet section.

Note Most of the pre-defined data types in LotusScript are represented by
the following suffix types:

Data Type Suffix

Currency @

Double #

Integer %

Long &

Single !

String $

418 Lotus Notes Release 4.5: A Developer’s Handbook

Sample Uses of the ODBCConnection Class:
1. To get a data source list registered by the ODBC administrator, use the

ListDataSources method of the ODBCConnection class.

Dim con As New ODBCConnection
Dim dl As Variant
dl = con.ListDataSources
'** Keywords is a field name in which a data source list
is saved
keyDoc.Keywords = dl

2. To get a table list owned by a database, use the ListTables method of
the ODBCConnection class.

Dim con As New ODBCConnection
Dim tl As Variant
'** sampleDB1 is a database name registered in this
example
tl = con.ListTables("sampleDB1")
'** Keywords is a field name in which a table list is
saved
keyDoc.Keywords = tl

Note When the ListTables method is issued, the SQLConnect ODBC
API is called in LS:DO before getting a table list. So you don’t need to
execute the ConnectTo method.

3. To get a column name list owned by a table, use the ListFields method
of the ODBCConnection class.

Dim con As New ODBCConnection
Dim Clist As Variant
Dim status As Variant
'** sampleDB1 is a database name registered in this
example
status = con.ConnectTo("sampleDB1")
'** courses is a table name in the sampleDB1 database
CList = con.ListFields("courses")
'** Keywords is a field name in which a column list is
saved
keyDoc.Keywords = Clist

ODBCQuery Class
The ODBCQuery class is used to hold the ODBCConnection object in which
a connection is established, and to hold an SQL statement you want to use
to perform the inquiry. The SQL statement is parsed through the ODBC
driver which your application requires.

Chapter 16: Accessing Relational Database Management Systems With Notes 419

Property
The three properties of this class are shown below:

Property Data Type Read/Write

Connection ODBCConnection Object W

QueryExecuteTimeOut Integer R/W

SQL String R/W

Method
The ODBCQuery class provides the following methods:

Method Argument Return Value

GetError Constant

GetErrorMessage([error%]) error%:
DB_LASTERROR or Constants *1

String

GetExtendedErrorMessage
([error%])

error%:
DB_LASTERROR or Constants *1

String

*1 Error number list is shown in ODBCResultSet section.

Sample Uses of the ODBCQuery Class:
This sample shows a sample execution of an SQL statement using the
Execute method in ODBCResultSet. The following steps are needed before
executing the Execute method. The Connection method and the SQL
property in ODBCResutlSet class are also used in this example.

Dim con As New ODBCConnection
Dim qry As New ODBCQuery
Dim res As New ODBCResultSet
Dim status As Variant
'** sampleDB1 is a database name registered in this
example
status = con.ConnectTo("sampleDB1")
Set qry.Connection = con
'** courses is a table name in the sampleDB1 database
qry.SQL = "select * from courses"
Set res.Query = qry

ODBCResultSet Class
The ODBCResultSet class has many functions used to handle records which
are termed result sets. A result set holds the retrieved records of an SQL
query which is specified with the ODBCQuery object.

420 Lotus Notes Release 4.5: A Developer’s Handbook

Property
The following table shows the properties available with the ODBCResultSet
Class:

Property Data Type Read/Write

Asynchronous Boolean R/W

AutoCommit Boolean R/W

CacheLimit Integer R/W

CommitOnDisconnect Boolean R/W

CurrentRow Integer R/W

FetchBatchSize Integer R/W

HasRowChanged Boolean R

IsBeginOfData Boolean R

IsEndOfData Boolean R

IsResultSetAvailable Boolean R

MaxRows Integer R/W

NumColumns Integer R

NumRows Integer R

Override Boolean W

Query ODBCQuery Object W

ReadOnly Boolean R/W

Methods
The methods of the ODBCResultSet class can be categorized into the
following areas:

SQL execution and transaction control

Result set row navigation and location

Accessing column values

Result set row modification operations

Column attributes operations

SQL parameter operations

The following tables show the methods based on the above categories.

Chapter 16: Accessing Relational Database Management Systems With Notes 421

SQL Execution and Transaction
These methods are used to issue an SQL statement and to commit or roll
back a transaction.

Method Argument Return Value
Type

Error Constant Event

Close(option) Option:
DB_CLOSE
DB_COMMIT
DB_ROLLBACK

Boolean BeforeClose
AfterClose

Execute([option]) Option:
DB_CANCEL

Boolean DBstsODBC BeforeExecute
AfterExecute
AsynchOperationComplete

Transactions(option) Option:
DB_COMMIT
DB_ROLLBACK

Boolean BeforeTransactions
AfterTransactions

Result Set Row Locating Operations
These methods are used to locate a cursor on a result set which is produced
by the Execute method.

Method Argument Return Value
Type

Error Constant Event

FirstRow Boolean DBstsINVR BeforeFirstRow
AfterFirstRow
BeforeRowPositionChange
AfterRowPositionChange

LastRow Boolean BeforeLastRow
AfterLastRow
BeforeRowPositionChange
AfterRowPositionChange

LocateRow(column,
value$ [, column,
value$,])

column is
Integer or String.

Boolean DBstsCARR
DBstsEOFD
DBstsNODA

BeforeLocateRow
AfterLocateRow
BeforeRowPositionChange
AfterRowPositionChange

NextRow Boolean DBstsINVR
DBstsEOFD

BeforeLocateRow
AfterLocateRow
BeforeRowPositionChange
AfterRowPositionChange

PrevRow Boolean DBstsINVR
DBstsCARR

BeforePrevRow
AfterPrevRow
BeforeRowPositionChange
AfterRowPositionChange

422 Lotus Notes Release 4.5: A Developer’s Handbook

Accessing Column Value Operations
These methods are used to access specific column values and to check
column properties.

Method Argument Return Value
Type

Error Constant Event

GetValue(column
[, variable])

column is Integer
or String.

Variant DBstsINVC
DBstsNODA
DBstsCNVR

BeforeGetValue
AfterGetValue

IsValueAltered(column) column is Integer
or String.

Boolean DBstsINVC

IsValueNull(column) column is Integer
or String.

Boolean DBstsINVC

SetValue(column, value) column is Integer
or String

Boolean DBstsRDON
DBstsRDEL
DBstsINVC
DBstsCNVR
DBstsNODA

AfterSetValue
BeforeSetValue

Result Set Row Modification Operations
These methods enable you to dynamically add and delete rows from within
the result set. Furthermore, you can retrieve the row status and you can
update the altered result set in the database.

Method Argument Return Value Type Error Constant Event

AddRow Boolean DBstsAHVR
DBstsRDON
DBstsNOEX

BeforeAddRow
AfterAddRow

DeleteRow(tableName$) Boolean DBstsINVR
DBstsNUNQ
DBstsRCHG
DBstsRDON

BeforeDeleteRow
AfterDeleteRow
RowContentsChanged
TransactionsPending

GetRowStatus DB_UNCHANGED
DB_ALTERED
DB_UPDATED
DB_DELETED
DB_NEWROW

DBstsNODA

RefreshRow Boolean DBstsNUNQ
DBstsINVR

BeforeRefreshRow
AfterRefreshRow

UpdateRow Boolean DBstsRDON
DBstsRDEL
DBstsCXIN
DBstsNUNQ
DBstsRCHG
DBstsRUNC
DBstsUPDB

BeforeUpdateRow
AfterUpdateRow
TransactionsPending
RowContentsChanged

Chapter 16: Accessing Relational Database Management Systems With Notes 423

Column Attributes Operations
These methods allow you to access information about the column
attributes.

Method Argument Return Value Type Error Constant

FieldExpectedDataType
(column [, dataType])

column is Integer or String.
dataType:
DB_TYPEUNDEFINED
DB_CHAR
DB_SHORT
DB_LONG
DB_DOUBLE
DB_DATE
DB_TIME
DB_BINARY
DB_BOOL
DB_DATETIME

DB_TYPEUNDEFINED
DB_CHAR
DB_SHORT
DB_LONG
DB_DOUBLE
DB_DATE
DB_TIME
DB_BINARY
DB_BOOL
DB_DATETIME

DBstsINVC

FieldID(columnName$) Integer DBstsINVC

FieldInfo(column) column is Integer
or String.

Array with
elements *1

DBstsINVC

FieldNativeDataType
(columnID%)

String DBstsINVC

FieldID(column) column is Integer
or String.

Constant *2 DBstsINVC

FieldName(column) column is Integer
or String.

Integer DBstsINVC

SQL Parameter Operations
These methods are used to define new SQL parameters and to retrieve the
values of those already existing.

Method Argument Return Value Type Event

GetParameter(parameter) parameter is Integer
or String

Variant BeforeGetParameter
AfterGetParameter

GetParameterName
(parameterID%)

String BeforeGetParameterName
AfterGetParameterName

NumParameters Integer

SetParameter(parameter,
value$)

parameter is Integer
or String

Boolean BeforeSetParameter
AfterSetParameter

424 Lotus Notes Release 4.5: A Developer’s Handbook

Error Operations
These methods are used to deal with error messages.

Method Argument Return Value Type

GetError Constant *3

GetErrorMessage([error%]) error%:
DB_LASTERROR
or Constants *3

String

GetExtendedErrorMessage([
error%])

error%:
DB_LASTERROR
or Constants *3

String

*1 The following table shows return value constants of the FieldInfo
method.

DB_INFO_AUTOINCREMENT DB_INFO_NULLABLE

DB_INFO_CASESENSITIVE DB_INFO_PRECISION

DB_INFO_COLUMNID DB_INFO_READONLY

DB_INFO_COLUMNNAME DB_INFO_SCALE

DB_INFO_COMPUTED DB_INFO_SEARCHABLE

DB_INFO_DISPLAYSIZE DB_INFO_SETTABLE

DB_INFO_EXPECTED_DATATYPE DB_INFO_SQLDATATYPE

DB_INFO_LENGTH DB_INFO_TABLENAME

DB_INFO_MONEY DB_INFO_UNSIGNED

DB_INFO_NATIVE_DATATYPE

*2 The following table shows return value constants of the
FieldNativeDataType method.

SQL_CHAR SQL_FLOAT SQL_TIMESTAMP SQL_LONGVARBINARY

SQL_NUMERIC SQL_REAL SQL_VARCHAR SQL_BIGINT

SQL_DECIMAL SQL_DOUBLE SQL_BINARY SQL_TINYINT

SQL_INTEGER SQL_DATE SQL_VARBINARY SQL_BIT

SQL_SMALLINT SQL_TIME SQL_LONGVARCHAR

Chapter 16: Accessing Relational Database Management Systems With Notes 425

*3 The following table shows error constants.

DBstsSUCCESS DBstsINVC DBstsDSTY DBstsTMPL DBstsRDON

DBstsFAIL DBstsNCOL DBstsDRVN DBstsBROW DBstsRCHG

DBstsMEMF DBstsBADP DBstsFITY DBstsCANF DBstsRUNC

DBstsNCON DBstsODBC DBstsFILT DBstsCNVR DBstsCXIN

DBstsCCON DBstsLIBM DBstsINST DBstsCNVD DBstsAHVR

DBstsNOEX DBstsSNFD DBstsNODR DBstsHSTMT DBstsCPAR

DBstsINVR DBstsINTR DBstsNAUT DBstsSQLP DBstsNIRC

DBstsCARR DBstsACCS DBstsNOSV DBstsINTE DBstsRDEL

DBstsNODA DBstsTYPE DBstsNAPE DBstsUPDB

DBstsEOFD DBstsENTR DBstsSVRQ DBstsNUNQ

Sample Programs Using the ODBCResultSet Class
In this example we get a column value list.

Dim con As New ODBCConnection
Dim qry As New ODBCQuery
Dim res As New ODBCResultSet
Dim status As Variant
'** sampleDB1 is a database name registered in this
example
status = con.ConnectTo("sampleDB1")
Set qry.Connection = con
'** courses is a table name in the sampleDB1 database
qry.SQL = "select * from courses"
Set res.Query = qry
Call res.execute
Dim num As Integer
num = 0
Dim vl As Variant
Redim vl(num)
Do
'** name is a column name in the courses table
 vl(num) = res.GetValue("name")
 num = num + 1
 Redim Preserve vl(num)
Loop While res.NextRow
'** CValue is a field name in which a value list is saved
gDoc.CValue = vl

426 Lotus Notes Release 4.5: A Developer’s Handbook

The Millennia Multimedia Case Study: An Example Program

In this section, we will present a more elaborate example to demonstrate
how to access a database using the LS:DO classes.

The Millennia Multimedia Database Schema
Continuing with the case study introduced in the chapter on Developing
Web Applications, Millennia Multimedia uses a relational database
management system (here: Oracle) to hold course and schedule
information.

This database stores information about available courses and their
schedules. A course schedule is given by one or more planned classes with
a certain date, location, a teacher, and a maximum number of people who
can participate. All students for a given course are registered with the
required billing information.

The entity relationship (E-R) diagram for this database looks as follows:

Using this E-R diagram, we can define a logical database schema. The
following relations need to be created. The primary keys of the relations are
underlined:

Class (ID, CourseID, LocationID, Teacher, StartDate, EndDate, Limit,
Language, Price, Currency, LocationID)

Course (ID, CName, CDesc, CType)

Student (SSN, FName, LName, Company, Title, HasPaid, CreditNo, EMail)

Location (ID, Country, State, ZIP, City, Street, Building)

Enrollment (ClassID, StudentSSN)

has

enrolls

occupiesClass

Course

Student

Location

n m

1

1

n

n

ID

Teacher
Price

ID

Country
City

SSN

CreditNo

LName

ID

Description

Name

Chapter 16: Accessing Relational Database Management Systems With Notes 427

To keep the relations as simple as possible, not all attributes that you would
expect in a real business database are included.

Sample SQL Query
In this example we use the presented database schema which was
implemented on an Oracle database server to write a script that retrieves all
enrollments for a given person’s name.

The following figure is a graphical representation of the query:

The SQL statement

The following SQL statement is based on the above relationships.

SELECT B.ID, B.STARTDATE, B.ENDDATE, E.CNAME, E.CDESC,

A.CITY, A.STREET, A.BUILDING, B.ROOMNO, A.VOICE

FROM LOCATION A, CLASS B, COURSE E

WHERE B.LOCID=A.ID AND B.COURSEID=E.ID AND

B.ID IN (SELECT D.CLASSID

FROM STUDENT C, ENROLLMENT D

WHERE C.FNAME=’FirstName’ AND C.LNAME=’LastName’ AND

C.SSN=D.STUDENTSSN)

ID

CNAME

CDESC

Course

CLASSID

STUDENTSSN

Enrollment

SSN

FNAME

LNAME

Student

ID

CITY

STREET

BUILDING

VOICE

Location

ID

COURSEID

LOCID

ROOMNO

STARTDATE

ENDDATE

Class

Input

Output

428 Lotus Notes Release 4.5: A Developer’s Handbook

Sample Script

The script is as follows:

Sub Click(Source As Button)
Dim ws As New NoteUIWorkspace
Dim doc as NotesDocument
Dim con As New ODBCConnection
Dim qry As New ODBCQuery
Dim res As New ODBCResultSet
Dim status As Variant
Set doc = ws.CurrentDocument.Document
status = con.ConnectTo("Millennia")
Set qry.Connection = con
'** the select statement
qry.SQL = | SELECT B.STARTDATE, B.ENDDATE, E.CNAME,
E.CDESC,A.CITY, A.STREET, A.BUILDING, B.ROOMNO, A.VOICE
FROM LOCATION A, CLASS B, COURSE E
WHERE B.LOCID=A.ID AND B.COURSEID=E.ID AND
B.ID IN (SELECT D.CLASSID
FROM STUDENT C, ENROLLMENT D
WHERE C.FNAME='| & doc.FirstName & _
"' AND C.LNAME='" & doc.LastName & _
"' AND C.SSN=D.STUDENTSSN)"
Set res.Query = qry
Call res.execute
Dim num As Integer
num = 0
Dim vl As Variant
Redim vl(num)
Do
'** Concatenate all column values
 For colnum = 1 to 9
 vl(num) = vl(num) & " " & res.GetValue(colnum)
 Next
 num = num + 1
 Redim Preserve vl(num)
Loop While res.NextRow
'** doc.CValue is a field name in which the results are
saved.
doc.CValue = vl
Call res.Close
Call con.Disconnect

Chapter 16: Accessing Relational Database Management Systems With Notes 429

Using @DB Functions to Access Other Databases Through ODBC

@DBCommand, @DBLookup and @DBColumn are Notes functions that
enable you to access RDBMSs which use the underlying ODBC interface.
The @DB formulas are read-only.

The basic purpose of these functions is to create value lists for keyword
fields. @DBLookup and @DBColumn can be used to query a relational
database; @DBCommand is only used for executing stored procedures.
@DBCommand does not return result sets. If you need a more customized
and more complex query, LS:DO is a bettter option.

When to Use
Lotus Notes provides fast and easy-to-use read access to ODBC-compliant
DBMSs via @DB functions. Notes @DB functions give developers the power
of three frequently-used query tasks:

Generating Keyword Lists

The @DBColumn function in the Notes formula language generates
Notes keyword lists from internal as well as external data sources. The
same function supports keyword value lookups in tables stored in a
DBMS through ODBC. For example, a Notes @DBColumn field formula
can present a keyword list of customer names stored in a DBMS table
when composing a document in a Notes customer contact tracking
database.

Performing Lookup Operations

The @DBLookup function looks up a value in one field based on the
value of a related field. For example, it will look up a customer phone
number in a DBMS when given a customer name in Notes. Like
@DBColumn, @DBLookup works both with other Notes databases and
with external data sources through ODBC. The @DBColumn and
@DBLookup functions can be used in other Notes formula contexts as
well, such as input validation or translation formulas.

Launching External DBMS Stored Procedures

Database procedures and insert statements can be triggered with the
@DBCommand function.

430 Lotus Notes Release 4.5: A Developer’s Handbook

How to Use @DB Functions
The @DB functions are summarized in the following table:

Functions Descriptions Equivalent SQL
@DBColumn Generates a keyword list.

Returns a specified column for
all rows in the specified table.

SELECT DISTINCT
column_name FROM
table_name

@DBLookup Performs a lookup. Returns a
specified column value in the
row that matches the specified
condition.

SELECT column FROM
table WHERE condition

@DBCommand Triggers stored procedures in
the external database.

(any SQL statement)

How to Use @DBColumn
The @DBColumn syntax is:

@DBColumn("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; TableName ; ColumnName : NullHandling
; Distinct : Sort)

Parameters:

@DBColumn(“ODBC”: Description Choice Optional

Cache, Inquiry Cache “Cache” (Default)
“NoCache”

X

DataSource, Database resouce
name

UserID1:UserID2, User IDs X

Password1:Password2, Passwords X

TableName, Table Name

ColumnName: Column Name

NULLHandling, Null Handling “Fail”
“Discard” (Default)
“ReplacementValue”

X

Distinct: Remove duplicate
values

“Distinct” X

Sort) Sort Direction “Ascending”
“Descending”

X

Chapter 16: Accessing Relational Database Management Systems With Notes 431

How to Use @DBLookup
The @DBLookup syntax is:

@DBLookup("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; TableName ; ColumnName :
NullHandling ; KeyColumn ; Key ; Distinct : Sort)

Parameters:

@DBLookup(“ODBC”: Description Choice Optional

Cache, Inquiry Cache “Cache” (Default)
“NoCache”

X

DataSource, Database resouce
name

UserID1:UserID2, User IDs X

Password1:Password2, Passwords X

TableName, Table Name

ColumnName: Column Name

NULLHandling, Null Handling “Fail”
“Discard” (Default)
“ReplacementValue”

X

KeyColumn, Column Name to be
looked into

Key, Search String in
KeyColumn

Distinct: Remove duplicate
values

“Distinct” X

Sort) Sort Direction “Ascending”
“Descending”

X

432 Lotus Notes Release 4.5: A Developer’s Handbook

How to Use @DBCommand
The @DBCommand syntax is:

@DBCommand("ODBC": Cache ; DataSource ; UserID1 : UserID2 ;
Password1 : Password2 ; SQL ; NullHandling)

Parameters:

@DBCommand(“ODBC”: Description Choice Optional

Cache, Inquiry Cache “Cache” (Default)
“NoCache”

X

DataSource, Database resouce
name

UserID1:UserID2, User IDs X

Password1:Password2, Passwords X

SQL SQL Statement

NULLHandling) Null Handling “Fail”
“Discard” (Default)
“ReplacementValue”

X

Using the Oracle LSX
The Oracle LotusScript Extension (Oracle LSX) is a library of LotusScript
classes for dedicated access to Oracle Release 7 databases. Unlike the
LS:DO interface that uses the ODBC industry standard to enable access to
many different database systems, the Oracle LSX object model is specific to
Oracle databases. It uses the native Oracle API for its operation.

If you are planning to access only Oracle databases from within your Notes
applications, you may want to use the Oracle LSX instead of LS:DO. The
Oracle LSX classes offer special database access features to you, such as real
SQL parameters and SQL array parameter operations to enhance the
performance of Oracle database operations. Also, it avoids the additional
ODBC passthru overhead for all database statements. On the other hand, if
you are not sure whether or not you need to access other database systems
in the future, we recommend that you rely on the much more general
LS:DO object model.

In contrast to LS:DO, with the Oracle LSX you get full access to the Oracle
database management system. This means that you can execute any SQL
statement, including operations on table spaces, for example.

Chapter 16: Accessing Relational Database Management Systems With Notes 433

Architecture
In your Notes object event scripts, you load the Oracle LSX with a USELSX
statement. From then on, you can create objects of the classes provided by
the LSX to establish database connections; you can call methods on these
objects to perform queries and other SQL statements. The Oracle LSX
classes translate all these operations into the appropriate Oracle API calls
which are then passed either to the Oracle database system on the local
machine, or via SQL*Net to a remote Oracle server. The following figure
illustrates this architecture:

Object Hierarchy
The Oracle LSX object model consists of five object classes which are
related to each other in a containment hierarchy. These are OracleSession,
OracleConnection, OracleDynaset, OracleParameter, and OracleColumn.

The containment relationship between the classes determines the way in
which they are used:

1. At the beginning, you must create an OracleSession object which
provides a context for all further database connections.

2. An object of the class OracleConnection is used to establish and
manage a connection to a database.

Oracle
Session

contains many

Oracle
Connection

Oracle
Dynaset

Oracle
Parameter

Oracle
Column

434 Lotus Notes Release 4.5: A Developer’s Handbook

3. For a given connection, you can execute arbitrary SQL statements
that don’t return values, and SQL queries. All statements can be
parameterized using OracleParameter objects. Furthermore, you will
usually create an OracleDynaset to perform operations on the query
result set.

4. Each of the result set columns in the OracleDynaset are represented by
objects of the class OracleColumn. They hold useful name and size
information.

Using the Oracle LSX Classes

Setting Up a Session
The main access point to all Oracle database facilities is provided by an
OracleSession object. The first action in your script is to create such an
object. Then you can call the GetConnection method on that object to
establish the first connection to an Oracle database.

Your Notes application will have exactly one session object regardless how
often you create such an object. Any subsequent attempt will not return a
new session object but a reference to the object that was created by the first
call. This global session object maintains all connections you create.
Furthermore, you create OracleParameter objects using method calls on this
session object, and you can retrieve created parameter objects by name.
These SQL parameters play an important role when you want to implement
efficient SQL statements; we will describe them later.

Finally, the session object supports you with properties for error detection
and handling.

The available methods for a session object are:

CreateParameter and GetParameter

SQL parameter maintenance.

GetConnection

Establishes a new database connection.

Establishing a Database Connection
The declaration of the GetConnection method of a session object is as
follows:

GetConnection (connect_string,
 userid, password,
 type, commit_mode)

The connect_string holds the SQL*Net connect string by which you identify
the database you want to connect to. The parameters userid and password
are used to log you in.

Chapter 16: Accessing Relational Database Management Systems With Notes 435

The parameter type is one of the values CONNECT_SHARED and
CONNECT_EXCLUSIVE. It enables you to specify whether to share an
already existing connection to the same database with the same user ID and
the same transaction mode (commit_mode). When you want to establish a
connection to another database, or to the same database with another user
ID or transaction mode, or you specify CONNECT_EXCLUSIVE, a new
connection will be established.

Note Connections are a limited resource in Oracle, and establishing
connection is a time-consuming operation.

The parameter commit_mode determines whether you want to commit
each SQL statement immediately (COMMIT_AUTO), or by a separate
method call (COMMIT_PROGRAM). The latter option is most useful when
you have to deal with transactions that contain multiple SQL statements.
However, you must distinguish between data definition language (DDL)
statements that change the data model, and data manipulation statements
(DML) that operate on data stored in tables. DDL statements are always
committed immediately; the commit_mode option only affects the DML
statements.

Executing DDL and Simple DML Commands
The OracleConnection class contains properties that inform you about the
connection string, the user ID, and the chosen connection type and
transaction mode.

You can call the following methods on a connection object:

Commit and Rollback

These methods either commit or undo your database operations since
the last commit or rollback.

ExecuteSQL

You may use this method to execute any DDL and DML statement as
well as any PL/SQL block. It is not intended to return any values, hence
it doesn’t make sense to execute a query that returns a set of rows. Use
the method CreateDynaset for that purpose.

CreateDynaset

This method enables you to execute queries that return a set of rows.
The resulting set is returned as an OracleDynaset object through which
you can navigate to perform further processing.

436 Lotus Notes Release 4.5: A Developer’s Handbook

The following sample LotusScript code demonstrates how to use the
OracleSession and OracleConnection classes. The purpose of the script is to
insert 100 new courses into the Millennia database. It uses a parameterized
SQL statement in conjunction with appropriate OracleParameter objects
that hold the value arrays to be inserted:

'** Load the Oracle LSX
UseLSX "lsxorcl.dll"

'** Declaration and definition of a database session
Dim session as New OracleSession
'** Declaration of a connection object
Dim conn as OracleConnection

'** Establishing a shared connection with programmed commit
Set conn = session.GetConnection ("Millennia",
 "ADMIN", "PASSWORD",
 CONNECT_SHARED,
 COMMIT_PROGRAM)
'** Create SQL parameters for insertion: 5 steps
'** (1) Create LotusScript value arrays
Dim IDValArr (100) As Integer
Dim CNameValArr (100) As String
Dim CDescValArr (100) As String
Dim CTypeValArr (100) As Integer

'** (2) Fill the arrays with the values to insert
...
'** (3) Declare corrsponding OracleParameters
Dim IDOraParm As OracleParameter
Dim CNameOraParm As OracleParameter
Dim CDescOraParm As OracleParameter
Dim CTypeOraParm As OracleParameter

'** (4) Define the OracleParameters:
'** Here, all parameters are input parameters.
'** Each of them has a name, a type, and an array size.
Set IDOraParm = session.CreateParameter ("ID",

PARAMETER_INPUT,
LS_DT_LONG_INTEGER, 100)

'** String arrays also get the maximum string length
Set CNameOraParm = session.CreateParameter ("CName",

PARAMETER_INPUT,
LS_DT_VARIABLE_STR, 100, 30)

Set CDescOraParm = session.CreateParameter ("CDesc",
PARAMETER_INPUT,
LS_DT_VARIABLE_STR, 100, 70)

Chapter 16: Accessing Relational Database Management Systems With Notes 437

Set CTypeOraParm = session.CreateParameter ("CType",
PARAMETER_INPUT,
LS_DT_SHORT_INTEGER, 100)

'** (5) now assign the value arrays to the parameter objects
IDOraParm.Value = IDValArr
CNameOraParm.Value = CNameValArr
CDescOraParm.Value = CDescValArr
CTypeOraParm.Value = CTypeValArr

'** Now execute the SQL statement: it inserts 100 rows.
'** We have to use the SQL parameter names as
'** defined for the OracleParameter objects.
conn.ExecuteSQL ("Insert into Course values

(:ID, :CName, :CDesc, :CType)")

'** Commit the work
conn.Commit

Executing Queries
The declaration of the CreateDynaset method of a connection object is as
follows:

OracleDynaset CreateDynaset (select_str
 [,scrollmode]
 [,pagesize] [,cachemode]
 [,iomode])

The only required argument is select_str, in which you pass a select
statement as a string.

The remaining arguments are intended for fine-tuning the navigation
through the result set. They heavily depend on the query you specify, and
on the navigation through the resulting rows:

Oracle always fetches a fixed size of rows from the server when you
navigate to a row that wasn’t yet fetched. The pagesize parameter
determines how many rows are fetched; the default is 100.

The scroll mode specifies whether the dynaset maintains only one page
of rows at a time, or if it attempts to hold all fetched rows.

The cache mode indicates whether the dynaset should use main or
secondary storage on the local file system as cache. The latter is the
recommended mode for Windows 3.X.

The iomode parameter specifies whether the result set is to be modified
or not.

438 Lotus Notes Release 4.5: A Developer’s Handbook

Working With Query Result Sets
The OracleDynaset returned by a CreateDynaset call represents the query
result set of rows. This class maintains a cursor to a current position in the
dynaset, and provides you with the following types of methods to
manipulate the set:

Navigation methods

Using the functions GoTo (rownumber) and GoToLast, you can access
any row in the result set.

Access methods

You can retrieve the meta information of the result columns using the
method GetColumn. It returns an OracleColumn object that stores the
name and the data type for the column in question.

You access the values of individual columns of the current row just like
a property of the OracleDynaset object. This means that you type

dynaset.CName

if your SELECT statement contains CName as result column. If you
want to update the column value, simply assign the new value to that
property.

Note This great flexibility is a feature of LotusScript. Classes need not
be of static type; the class implementation may extend the attribute set
of a class dynamically. The OracleDynaset class implementation makes
use of this mechanism, and adds the column names of the query result
expression as new properties. Note that some default rules apply to
computed columns. You may change any column name of the result
expression by modifying the name information stored in the
OracleColumn objects.

Also, certain methods enable you to retrieve the column values of data
type LONG for the current row.

DML methods

Using the InsertRow and DeleteRow methods, you can insert new rows
into the result set, and delete existing ones.

Database update method

If you modify the query result set, you have to store the changes in the
database by calling the SendUpdatesToDB. Otherwise the changes are
lost.

Chapter 16: Accessing Relational Database Management Systems With Notes 439

The following example uses the course and schedule information stored in
the Millennia database to implement a specific marketing activity. A special
offer volume discount mailing is produced for all students that have
attended more than three classes. The code is as follows:

 '** Load the Oracle LSX
 UseLSX "lsxorcl.dll"

 '** Declaration and definition of a database session
 Dim session as New OracleSession
 '** Declaration of a connection object
 Dim conn as OracleConnection

 '** Establishing a shared connection with programmed
 commit
 Set conn = session.GetConnection ("Millennia",
 "ADMIN", "PASSWORD",
 CONNECT_SHARED,
 COMMIT_PROGRAM)

 '** Create a dynaset related to the intended SQL query
 Dim resultSet as OracleDynaset
 Set ds = conn.CreateDynaset (_
 " select Title, Fname, Lname, Email " _
 & " from Student " _
 & " where SSN in " _
 & " (select Studentssn " _
 & " from Enrollment " _
 & " group by Studentssn " _
 & " having count (Classid) > 3)")

 '** Prepare the end-of-set handling
 On Error OR_ERR_DS_EMPTY GoTo EndOfResultSet
 On Error OR_ERR_NOSUCHROW GoTo EndOfResultSet

 '** Create the mailing including all those students
 resultSet.GoTo (1)

 While True
 '** Create a memo for that student.
 '** The procedure createMemo is not shown here.
 Call createMemo (resultSet.Title, _
 resultSet.Fname, resultSet.Lname, _
 resultSet.Email)
 '** Move the cursor to the next row
 resultSet.GoTo (resultSet.CurrentRow + 1)
 Wend

EndOfResultSet:
 '** End of the script

440 Lotus Notes Release 4.5: A Developer’s Handbook

ODBC Database Access Methods in Lotus Spreadsheet Component

The Lotus Spreadsheet component is one of the Lotus Components. It
embeds the LotusScript language, and provides you with some database
access functions that you can use to perform calculations based on values
stored in databases.

Like the LS:DO, these access functions rely on the ODBC interface. In
contrast to LS:DO, they don’t include the concept of query result sets,
because they are not intended to update databases but rather to put the
retrieved values in sheet cells. The functions are designed to provide a very
easy method to access arbitrary relational databases, and to render the
results of a query. For example, the size of the spreadsheet can be
dynamically changed according to a result of a query.

Note You need a platform which supports OCX to utilize Lotus
Components features, such as Windows95.

How to Use ODBC Database Access Methods
There are three methods for ODBC database access.

ODBCConnection method

ODBCConnect(pConnect$, bShowErrors&, pRetCode%)

pRetCode% is “Call by Reference.”

ODBCQuery method

ODBCQuery(pQuery$, nRow&, nCol&, bForceShowDlg&,
pSetColNames&, pSetColFormats&, pSetColWidths&,
pSetMaxRC&, pRetCode%)

pSetColNames&, pSetColFormats&, pSetColWidths&, pSetMaxRC&
and pRetCode% are “Call by Reference.”

ODBCDisconnect method

ODBCDisconnect

The most complicated is the ODBCQuery function that supports interactive
as well as non-interactive queries. While the latter query type is most useful
to gain complete control over the query parameters in the script, interactive
queries prompt you to specify the database, the query statement, and the
result columns during runtime. Depending on the type of the query, you
have to take care of the way you pass arguments. Some arguments must be
passed by reference, because they return values.

Chapter 16: Accessing Relational Database Management Systems With Notes 441

Example: A Non-Interactive Query
In the following examples we demonstrate how to use the ODBC data
access functions in the Lotus Spreadsheet Component. Both examples are
based on a single form that contains different scripts in the two button click
events.

Scripts
Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim udoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim obj As Variant
 Dim dbName As String
 Dim sql As String
 Dim ret As Integer
 Dim CName As Long, CFormat As Long
 Dim CWidth As Long, CMaxRC As Long
 Set udoc = ws.CurrentDocument
 Set doc = udoc.Document
 '** Move the cursor to the field in which a spreadsheet
 is created.
 Call udoc.gotofield("RText")
 Set obj =

442 Lotus Notes Release 4.5: A Developer’s Handbook

udoc.createObject("Sheet","Lotus.SpreadSheet.1")
 dbName = "dBaseDB1"
 Call obj.ODBCConnect(dbName,True,ret)
 sql = "SELECT * from courses"
 CName = True
 CFormat = True
 CWidth = True
 CMaxRC = True
 Call obj.ODBCQuery(sql, 1, 1, False, CName, CFormat,
CWidth, CMaxRC, ret)
End Sub

How It Works
When you click on the left button, you will get the following result: A
spreadsheet is created in the rich text item of the form, and the column
titles of that sheet are replaced with the column names of the queried
database table (instead of “A,” “B,” etc.). If the query result is too large to
fit in the visible part of the sheet window, scroll bars are displayed,
provided that you specified the appropriate option on the InfoBox for the
Lotus Spreadsheet component.

Chapter 16: Accessing Relational Database Management Systems With Notes 443

Example: An Interactive Query

Scripts
Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uDoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim obj As Variant
 Dim dbName As String
 Dim sql As String
 Dim ret As Integer
 Dim CName As Long, CFormat As Long
 Dim CWidth As Long, CMaxRC As Long
 Set udoc = ws.CurrentDocument
 Set doc = udoc.Document
 '** Move the cursor to the field in which a spreadsheet
 is created.
 Call udoc.gotofield("RText")
 Set obj =
udoc.createObject("Sheet","Lotus.SpreadSheet.1")
 Call obj.ODBCConnect(dbName,True,ret)
 CName = True
 CFormat = True
 CWidth = True
 CMaxRC = True
 Call obj.ODBCQuery(sql, 1, 1, False, CName, CFormat,
 CWidth, CMaxRC, ret)
 End Sub

How It Works
When you click on the right button, the following dialog box is displayed
prompting you to specify a database for the query:

444 Lotus Notes Release 4.5: A Developer’s Handbook

Then, the next dialog box prompts you to specify an SQL statement. As
soon as you select a table in the Table listbox, all column names in the table
are displayed in the Fields listbox.

The following figure shows the result of the above query:

Chapter 16: Accessing Relational Database Management Systems With Notes 445

Chapter 17
Accessing Notes From Relational Database
Management Systems and Query Tools

This chapter describes how to access Notes data from Relational Database
Management Systems and query tools.

When you have completed this chapter, you should know:

What NotesSQL is

Relationships between RDBMS and Notes databases

How to execute SQL against Notes data

What Is NotesSQL?

NotesSQLTM is the Lotus Notes ODBC driver for Windows, which enables
ODBC-compliant DBMSs and data query tools to access, query and report
on Notes-based information. Application developers have access to the
Notes data store from external DBMS applications, and have query tools
available which allow them to take advantage of the value of the data
stored in Notes.

NotesSQL makes Notes-based information seamlessly available to SQL
tools and applications. NotesSQL makes Notes “look” like another
relational back-end data source to the SQL tool or application interface, by
producing result sets that mirror the standard relational model. This allows
developers working primarily with relational tools to tap the value of data
stored in Notes databases.

Technical Advantages
NotesSQL allows the developer to issue SQL statements against Notes
databases, which is a significant advantage to developers who wish to use
Notes data in their applications. In essence, NotesSQL is really an SQL API
to Notes, with full level I ODBC 2.0 compliance and level II extensions.

447

Structure
The way a target database is accessed from an ODBC client, such as a Notes
database from Visual Basic, is the same as for any other ODBC driver. The
following figure shows how to reach a Notes database from an application
which uses NotesSQL.

When to Use NotesSQL
If you want to access a Notes database from an RDBMS or from another
application development tool, such as Oracle or Visual Basic, use
NotesSQL.

NotesSQL is designed for query and reporting tools and other ODBC-
compliant DBMSs and tools to access Notes data. For example, users often
need reports that incorporate data from both Notes and a DBMS. A sales
force automation application can use Lotus Notes to capture information
from field sales, such as customer feedback, contact management, and sales
forecasts, while customer orders are often managed by DBMSs.

NotesSQL allows an external DBMS or query tool to perform table joins or
combine the data from both sources in the same report. The date of last
contact from the Notes sales force application could be combined with the
latest customer order date via NotesSQL to produce a report on the length
of the sales cycle at a customer site or across a customer set. Query tools
leveraging NotesSQL provide structured data analysis of sales forecast

Notes
DB

API Call
Client

ODBC Driver
Manager

NotesSQL

Lotus Notes
Server

ODBC
Administrator

VisualBasic,
Access,
Oracle, etc.

ODBC Driver

ODBC.DLL
ODBC32.DLL

Lotus Notes
Workstation DLL Notes

DB

Network

No need to run
Notes Client

Data Resource Registration

448 Lotus Notes Release 4.5: A Developer’s Handbook

information stored in Lotus Notes. Similarly, that same information
collected in Notes can be pulled into DB2, for central storage and
distribution.

If you already have an ODBC-compliant program to access an RDBMS, you
may also be able to access a Notes database without any modification of
your program. In this case, the only thing you have to worry about is the
difference between an RDBMS and a Notes database, such as data types,
the conformance level of SQL, and so on, as a Notes database is not a
relational database.

Functionality

ODBC Conformance Level of NotesSQL
There are three conformance levels specified in the ODBC API, which are
Core Level, Extension Level 1 and Extension Level 2. These are just general
guidelines, and not all the drivers available today support all three levels.
Moreover, even if an ODBC driver supports a conformance level, not all the
APIs of that level are always supported. Many ODBC drivers conform to
both the Core Level and Extension Level 1.

NotesSQL supports all three levels of conformance except for some APIs of
Extension Level 2. This is described in the Limitations section later in this
chapter.

Core Level
Core Level is a minimum function set of the ODBC specifications. It mainly
supports:

Allocation and deallocation of the environment

Connection and disconnection of a database

SQL preparation and execution

Fetch data

Transaction control

Note This is not supported in NotesSQL. Lotus Notes does not have a
transaction mechanism.

Extension Level 1
Extension Level 1 extends the Core Level function set. It mainly supports:

Retrieving the table schema

Connecting to a database interactively

Getting and putting data of a result set

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 449

Extension Level 2
Extension Level 2 contains more sophisticated functions. It mainly
supports:

Primary key and foreign key

Note This is not supported in Notes, and thus, not in NotesSQL.

Tapping connection

The following three features are not supported in NotesSQL:

Table and column privilege control

Stored procedure

Cursor control

SQL Grammar Conformance Level of NotesSQL
The following three levels are available:

Minimum SQL
Minimum SQL only supports the character data type and simple
operations.

DDL DCL DML Expresions Data Types

CREATE TABLE
DROP TABLE

SELECT
INSERT
UPDATE Searched
DELETE Searched

Numeric
Operations
(+, -, *, /, <,
>, <=, >=, =,
<>)

CHAR
VARCHAR
LONGVARCHAR

Core SQL
Core SQL supports DCL (Data Control Language), and many operations
and data types.

DDL DCL DML Expressions Data Types

ALTER TABLE
CREATE INDEX
CREATE VIEW
DROP INDEX
DROP VIEW

GRANT
REVOKE

SELECT full
syntax

Subselect
Aggregation
(SUM, MIN,
MAX, AVG,
COUNT)

DECIMAL
NUMERIC
SMALLINT
INTEGER
REAL
FLOAT
DOUBLE

450 Lotus Notes Release 4.5: A Developer’s Handbook

Extended SQL
Extended SQL supports advanced operations, such as cursor related
operations and outer join.

DDL DCL DML Expressions Data Types

UPDATE Positioned
DELETE Positioned
Outer Join
Cursor Control
SELECT FOR UPDATE

Scalar
functions

TINYINT,
BIGINT,
BINARY,
VARBINARY,
LONG, BIT,
DATE, TIME,
TIMESTAMP

Note NotesSQL supports Minimum SQL and some of the other SQL
grammar.

Checking the Conformance Level
If you want to check the conformance levels of your ODBC driver, such as
NotesSQL, the SQLGetInfo ODBC function can help you do this. The
SQLGetInfo function is included in Extension Level 1 as an ODBC API
conformance level.

NotesSQL supports the SQLGetInfo function.

Constant and Function Declarations in Visual Basic
In most programming environments, such as Visual Basic, you need to
describe function declare statements in the ODBC DLL to use the NotesSQL
functions.

In ODBC programs, SQLAllocEnv, SQLAllocConnect, SQLConnect, and
SQLAllocStmt are often essential. If required, you can also use
SQLDriverConnect and SQLError.

'** Constant Declarations for SQLGetInfo
'** to check ODBC API and ODBC SQL Conformance Level
Public Const SQL_ODBC_API_CONFORMANCE As Long = 9
Public Const SQL_ODBC_SQL_CONFORMANCE As Long = 15
'** For ODBC API Conformance Level
Public Const SQL_OAC_NONE As Long = 0
Public Const SQL_OAC_LEVEL1 As Long = 1
Public Const SQL_OAC_LEVEL2 As Long = 2
'** For ODBC SQL Conformance Level
Public Const SQL_OSC_MINIMUM As Long = 0
Public Const SQL_OSC_CORE As Long = 1
Public Const SQL_OSC_EXTENDED As Long = 2

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 451

'** Options for SQLDriverConnect
Public Const SQL_DRIVER_NOPROMPT As Long = 0
Public Const SQL_DRIVER_COMPLETE As Long = 1
Public Const SQL_DRIVER_PROMPT As Long = 2
Public Const SQL_DRIVER_COMPLETE_REQUIRED As Long = 3
'** Return Code
Public Const SQL_ERROR As Long = -1
Public Const SQL_INVALID_HANDLE As Long = -2
Public Const SQL_NO_DATA_FOUND As Long = 100
Public Const SQL_SUCCESS As Long = 0
Public Const SQL_SUCCESS_WITH_INFO As Long = 1
'** ODBC Functions to issue SQLGetInfo
'** To get an Environment Handle
Declare Function SQLAllocEnv Lib "odbc32.dll" (phenv&) As
Integer
'** To get a Connection Handle
Declare Function SQLAllocConnect Lib "odbc32.dll" (ByVal
henv&, phdbc&) As Integer
'** To establish a connection
Declare Function SQLConnect Lib "odbc32.dll" (ByVal hdbc&,
ByVal szDSN$, ByVal cbDSN%, ByVal szUID$, ByVal cbUID%, ByVal
szAuthStr$, ByVal cbAuthStr%) As Integer
'** To establish a connection with a dialog box
Declare Function SQLDriverConnect Lib "odbc32.dll" (ByVal
hdbc&, ByVal hWnd As Long, ByVal szCSIn$, ByVal cbCSIn%,
ByVal szCSOut$, ByVal cbCSMax%, cbCSOut%, ByVal fDrvrComp%)
As Integer
'** To get a Statement Handle
Declare Function SQLAllocStmt Lib "odbc32.dll" (ByVal hdbc&,
phstmt&) As Integer
'** To get information on an ODBC driver
Declare Function SQLGetInfo Lib "odbc32.dll" (ByVal hdbc&,
ByVal fInfoType%, ByRef rgbInfoValue As Any, ByVal
cbInfoMax%, cbInfoOut%) As Integer
'** To get error information
Declare Function SQLError Lib "odbc32.dll" (ByVal henv&,
ByVal hdbc&, ByVal hstmt&, ByVal szSqlState$, pfNativeError&,
ByVal szErrorMsg$, ByVal cbErrorMsgMax%, pcbErrorMsg%) As
Integer

How to Issue SQLGetInfo in Visual Basic
The following program is about getting information on the ODBC API
Conformance level. If you don’t need a dialog box to specify a data source
name, you can replace SQLDriverConnect with SQLConnect.

Private Sub Command1_Click()
Dim ret As Integer
Dim msg As String
Dim rInfo As Long

452 Lotus Notes Release 4.5: A Developer’s Handbook

Dim rSize As Integer
Dim connect As String * 255
Dim connectLen As Integer
Dim henv As Long, hdbc As Long, hstmt As Long
'** To get an Environment Handle
ret = SQLAllocEnv(henv)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get a Connection Handle
ret = SQLAllocConnect(henv, hdbc)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To establish a Connection
ret = SQLDriverConnect(hdbc, Me.hWnd, "", 0, connect,
Len(connect), connectLen, SQL_DRIVER_PROMPT)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get a Statement Handle
ret = SQLAllocStmt(hdbc, hstmt)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
'** To get ODBC API Conformance Level
ret = SQLGetInfo(hdbc, SQL_ODBC_API_CONFORMANCE, rInfo, 300,
rSize)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If
Select Case rInfo
Case SQL_OAC_NONE: msg = "Core Level"
Case SQL_OAC_LEVEL1: msg = "Extension Level 1"
Case SQL_OAC_LEVEL2: msg = "Extension Level 2"
End Select
Text1.Text = "ODBC API Conformance Level (" & rInfo & ") " &
msg
End Sub

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 453

How it Works
The following figure shows how the above Visual Basic program works.
When you click the ODBC API button, the ODBC API Conformance Level
is displayed in a text box. The SQL Data Sources dialog box is displayed for
you to specify a data source name, since SQLDriversConnect is issued
without any data source names to establish a connection in the above
program.

NotesSQL Conformance Level Limitations
The following sections describe NotesSQL limitations with regard to
Conformance level support.

Data Mapping Limitations
Fields and columns containing the following @Functions cannot be queried
by SQL in NotesSQL:

@All

@DeleteDocument

@DeleteFields

@DocChildren

@DocLevel

@DocNumber

@DocParentNumber

@DocSiblings

@Error

@IsCategory

@IsExpandable

@Unavailable

454 Lotus Notes Release 4.5: A Developer’s Handbook

SQL Limitations
NotesSQL conforms to the Minimum SQL Level, most of the Core SQL
Level and some of the Extended SQL Level. But there are some limitations
of SQL usage as follows:

NULL and NOT NULL are not supported in ALTER TABLE.

UNIQUE is not supported in CREATE INDEX.

NULL, NOT NULL, UNIQUE PRIMARY KEY and REFERENCES are
not supported in CREATE TABLE.

GRANT and REVOKE are not supported.

Parameters are supported only in INSERT, DELETE and SELECT.

ODBC API Limitations
The following ODBC APIs are not supported in NotesSQL. Access
privileges to a database are limited only to access controls in a Notes
database.

SQLColumnPrivileges

SQLTablePrivileges

SQLForeignKeys

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

The following ODBC APIs in NotesSQL have different implementations of
ODBC specifications:

SQLCancel

SQLColumns

SQLGetConnectOption

SQLSetConnectOption

SQLGetStmtOption

SQLSetStmtOption

SQLSetParam

SQLSetScrollOptions

SQLTables

SQLTransact

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 455

Software Requirements

The software requirements are the same as those required by any other
ODBC driver and ODBC-compliant system:

Lotus Notes Client or Server

NotesSQL Release 2.0 or higher

ODBC Driver Manager Release 2.0 or higher

Note You must choose either the 16-bit or the 32-bit version of both
NotesSQL and the ODBC Driver Manager as required by your application.

Mapping Resources Between an RDBMS and a Notes Database

Connection String
When you connect to a data source, you need to supply a connection string,
which indicates a database name, a server name and so on.

DSN Data Source Name registered in ODBC Driver Manager

Database Notes DB Name

Server Notes Server Name or Blank for Local Notes DB

The user ID is supplied by the NOTES.INI file which belongs to the Notes
workstation or the Notes server.

The Notes system rather than the ODBC driver (NotesSQL) prompts for the
password, so that Notes security is maintained.

Table and View
A somewhat different concept is required to understand the relationship
between tables and views with regard to a Notes database and an RDBMS.

NotesSQL can deal with a Notes database as one real table, which is called
Universal Relation Table in NotesSQL. The Universal Relation Table holds
all fields contained in a Notes database.

Note The Universal Relation table name is the same as the database name.

The only supported SQLs are SELECT and CREATE VIEW. Explicit field
names must be specified in a SELECT statement, rather than using
‘SELECT *’. All fields are handled as text data.

456 Lotus Notes Release 4.5: A Developer’s Handbook

The following figure shows how a form and a view in a Notes database are
mapped to a table, a view, and an index in an RDBMS.

Note View names in a Notes database must be different from any form
names in that Notes database, because both of them can be mapped to a
table in an RDB.

A Notes View as an Index of an RDB
A Notes view can be handled as both a table and a view in NotesSQL.
When the following criteria in a design of a Notes view are satisfied, a
Notes view is mapped to an index in NotesSQL

Either ‘SELECT Form=FormName’ or ‘SELECT @ALL’ in a selection
formula

Only simple field references in columns and no formulas

At least one sorted column

Column

View

Form
Field

Universal
Relation
Table

Field Field

Field Field

Index

Table
Column

View

Column

Notes DBRDB

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 457

Mapping Data Types Between an RDB and a Notes Database

The following figure shows how specific data types are mapped in a Notes
database and an RDB.

For example, a Percent Format Number field in a Notes database is
converted to DECIMAL data in an SQL RDB. NUMERIC data in an SQL
RDB is converted to a Fixed Format Number field in a Notes database.

A List Field (Multi Value Field) is only available in some DMLs, such as
SELECT, INSERT, UPDATE and DELETE. The only supported data type is
Text. The representation is like this: ‘String1;String2’.

A rich text field cannot be created by NotesSQL. Only text portions in a rich
text field can be retrieved.

CHAR

NUMERIC

DECIMAL

INTEGER

SMALLINT

FLOAT

REAL

DOUBLE

DATE

TIME

TIMESTAMP

VARCHAR

LONGVARCHAR

Text

MultiValue List

Rich Text

Number
Fixed Format

Time

Notes Data Type
Number

Percent Format

Number
General Format

Number
Scientific Format

Section Not Supported
Text Only

SQL Data Type

Notes To SQL

SQL To Notes

Both Direction

458 Lotus Notes Release 4.5: A Developer’s Handbook

Basic API Calling Sequences

The following ODBC API sequences are necessary to issue an SQL
statement and to retrieve a result in your RDB or development tool. Query
tools perfom these statements automatically for the user.

1. SQLAllocEnv

To obtain an Environment Handle.

An Environment Handle must be supplied to any SQLAllocConnect
APIs.

2. SQLAllocConnect

To obtain a Connection Handle.

A Connection Handle must be supplied to any SQLConnect APIs.

3. SQLConnect

To connect to a database source.

4. SQLAllocStmt

To obtain a Statement Handle.

A Statement Handle must be supplied to many APIs to deal with table
and column information and to issue an SQL statement, such as
SQLColumns, SQLExecDirect, SQLFetch, SQLData, and so on.

5. SQLExecDirect

To run an SQL statement.

6. SQLFetch

To obtain a result set of an SQL.

7. SQLGetData

To retrieve column data from a result set.

8. SQLFreeStmt

To discard a Statement Handle.

9. SQLDisconnect

To close a connection.

10. SQLFreeConnect

To discard a Connection Handle.

11. SQLFreeEnv

To discard an Environment Handle.

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 459

Example: Accessing Notes From Visual Basic

Visual Basic has some ways of accessing Lotus Notes using the ODBC
feature:

Remote Data Control (RDC)

This is a visual control to deal with remote data access. Basically, no
programming is needed to access Notes. This feature can provide read
and write access to a database, but it is often only used to retrieve
database data.

Remote Data Object

Some methods and properties are available in the Remote Data Object
to access an ODBC database.

ODBC API Call

Environment handles, Connection handles and statement handles are
retrieved in both the Remote Data Control and the Remote Data Object.
They can be combined with each other.

Program Structure
The following sections provide some detailed information on how our
sample application accesses a Notes database from Visual Basic.

Creating a Data Source List
When the form module of our example is loaded, a data source list is
created by the ListDataSources subroutine and listed in a listbox as follows:

'** Form_Load is executed, when a Form is loaded.
Private Sub Form_Load()
'** To create a data source list using ODBC API
Call ListDataSources
End Sub
'** ListDataSources can make a data source list
'** and display it in a listbox
Sub ListDataSources()
Dim ret As Integer
Dim dataSource As String * 32
Dim dsDesc As String * 2048
Dim dsLen As Integer, dsDescLen As Integer
Dim henv As Long, hdbc As Long, hstmt As Long
'** To get an Environment Handle
ret = SQLAllocEnv(henv)
If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
End If

460 Lotus Notes Release 4.5: A Developer’s Handbook

'** To get Data Source List
'** Fetch the First Record
ret = SQLDataSources(henv, SQL_FETCH_FIRST, dataSource, 31,
dsLen, dsDesc, 2047, dsDescLen)
Do
 If ret = SQL_ERROR Then
 Call ErrorMSG(henv, hdbc, hstmt)
 Exit Sub
 ElseIf ret = SQL_NO_DATA_FOUND Then
'** When the end of records, Exit Do-sLoop
 Exit Do
 End If
 list1.AddItem dataSource
'** Fetch a Next Record
 ret = SQLDataSources(henv, SQL_FETCH_NEXT, dataSource, 31,
dsLen, dsDesc, 2047, dsDescLen)
Loop
End Sub

Creating a Table List
To create a table list according to the data source name you specified in the
data source list, click the Get Table List button. It is easy to get information
about table names in a database using one of the RDO properties
(rdoTables) as follows.

'** This subroutine is executed, when a button is clicked
Private Sub Command2_Click(
Dim tbNum As Integer
Dim tables As Variant
MSRDC1.SQL = ""
MSRDC1.DataSourceName = text2.Text
'** To connect to a data source
MSRDC1.Refresh
List2.Clear
'** To get table names in a data source and set them to a
listbox
For Each table In MSRDC1.Connection.rdoTables
 List2.AddItem tables.Name
Next
End Sub

How to Issue an SQL Statement and Get a Result Set
Before an SQL statement is executed, you need to create the following
Remote Data Control anywhere in your Visual Basic form. It should be
invisible using a property. To execute an SQL statement with this control,
specify a data source name in the DataSourceName property and an SQL
statement in the SQL property.

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 461

'** This subroutine is executed, when a button is clicked
Private Sub Command1_Click()
'** To Ignore Run Time Error
On Error Resume Next
MSRDC1.DataSourceName = text2.Text
MSRDC1.SQL = Text1.Text
'** To issue a query
MSRDC1.Refresh
'** Cancel To Ignore Run Time Error
On Error GoTo 0
End Sub

Note Our sample program does not provide for error handling, as we just
intended to show some behaviors of NotesSQL. When you input a wrong
SQL statement, nothing will happen. If you want to create a fully developed
error handling routine, remove the On Error statements in the above
program.

How it Works
This is how it works:

1. After the program is launched, the following data source list is
displayed. The data source list is only created at launch time.

462 Lotus Notes Release 4.5: A Developer’s Handbook

2. Choose a data source from the list and click the Get Table List button.
This displays a table list on the right-hand side of the dialog box. The
data source name which you chose is also displayed in the Selected
Data Source field. The table list is only used to refer to table names in a
database and has no effect on the following SQL query.

Chapter 17: Accessing Notes From Relational Database Management Systems and Query Tools 463

3. To get an SQL result set, specify an SQL statement in the SQL text box
and click the Execute SQL button.

The following figure shows a result set of a query to an Address Book
in Lotus Notes using the NotesSQL ODBC driver.

464 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 18
High Volume Data Transfer With NotesPump 2.0

This chapter describes Lotus NotesPump™ Release 2.0, which is used to
transfer data between Notes databases and external databases on different
types of Database Management Systems. The NotesPump LSX is introduced
and a sample is described. This chapter is based on NotesPump Release 2.0
Beta 3. Actual functionality and screen definitions may change at the final
release.

To get further information about NotesPump, visit the Lotus Web site at:
http://www.lotus.com/edgehome.

About Lotus NotesPump

Lotus NotesPump is a server-based data transfer engine that enables high
performance, scalable exchange of data between relational database
management systems (RDBMS) and Notes databases. Using NotesPump,
developers, database administrators, and Information Technology
professionals can establish frequently scheduled, event-driven, or ad-hoc
bi-directional exchanges of data among corporate data store systems,
including IBM DB2®, Oracle®, Sybase® and ODBCTM sources, and Notes
databases.

NotesPump comprises two components: the server engine, and
administration databases. The server engine operates on OS/2 Warp 3.0,
Windows NT 3.51, and HP-UXTM 10.01 platforms, and may optionally be
installed on a Notes Server machine as a co-resident task.

The administrative databases consist of the NotesPump Administrator, a
Notes database used to store instruction tasks executed by the server
engine(s), and the NotesPump Log which records NotesPump server
processing results in a Notes database.

The NotesPump server executes specific transfer operations including
Direct Transfer, Replication, Polling (event monitoring), Command
(executes command line and database instructions), and Scripted (utilizes
LotusScript®).

465

NotesPump Enterprise Features
NotesPump was designed to address corporate requirements to move
high-volume data sets between dissimilar databases, and to be managed
within enterprise network infrastructures. Lotus NotesPump provides high
performance options which enhance data transfer performance within these
system environments:

32-bit multi-tasking server engine

NotesPump Operates as a multi-tasking processor able to handle
multiple data transfer operations concurrently.

Scalable component architecture

Consisting of server engines, database modules, and defined transfer
Activities, may be added when required via the NotesPump
management application. NotesPump continually monitors the network
system for new components, and newly-added resources do not
interrupt service.

SNMP support

Servers may be monitored by SNMP management systems.

Customized, high performance database Link Options

Link Options are specific to individual databases supported to provide
higher speed data transfer throughput. Customized options include
Array processing, Bulk Transfer and database commit and rollback
options.

DB2 Link support

A native interface to IBM DB2 databases on all supported platforms.

Data Propagator relational support

Custom NotesPump Activity enables propagation of IBM Data
Propagator relational Consistent Changed Data table information
(CCD) to NotesPump-supported targets.

Notes R4 Administrator

Leverages Notes R4 ease-of-use features including Navigator and
collapsible form sections. New database browsing capabilities facilitate
easier management of server task definitions.

LotusScript support

The NotesPump LSX makes NotesPump classes available for scripting
using the Notes R4 client Integrated Development Environment (IDE).
Using Scripting within NotesPump, administrators can customize data
transfer applications processed by the NotesPump server.

HP-UX 10.01 NotesPump server support

466 Lotus Notes Release 4.5: A Developer’s Handbook

Internet Web browser access

Permits Web clients to submit and receive data queries processed via
the NotesPump server.

International data set character translation

Automatic detection and translation of international database
character sets.

NotesPump API

A C-based API used to create custom database links or Activities to
operate with the NotesPump server. The NotesPump API broadens
the scope of databases and applications that can be used with the
NotesPump server system.

Functions
NotesPump offers the following functions:

Data migration on a scheduled basis among Notes, DBMS or File
sources

The movement of data is either scheduled, polled or manually initiated.
NotesPump servers are administrated by a Notes application, the
NotesPump Administrator (see examples later in this section). A
snapshot of the data is taken and copied to the target platform on a
periodic basis. Selection criteria are available to control the amount of
data copied.

Replication services to synchronize data source information

NotesPump server operations include the capability to replicate
dissimilar database sources, thereby maintaining synchronized
information in each. Using a Primary key common to each database,
Replication Activities may be scheduled to periodically evaluate and
exchange data, keeping information in each consistent and current. Use
of a time-stamp key refines this operation, synchronizing only new
updates between the two data stores.

Conditional processing

NotesPump classes may be accessed from the Lotus Notes Release 4
integrated development environment (IDE) to create conditional
processing routines processed by the NotesPump server, thereby
extending database interchange capabilities.

Event monitoring

Polling allows the NotesPump user to define conditions to monitor in
Notes or DBMS sources, such as an insert to an DBMS table or a Notes
database. When a condition is satisfied, NotesPump immediately
initiates a specified data exchange Activity to accomplish data

Chapter 18: High Volume Data Transfer With NotesPump 2.0 467

exchange. Optionally, system administrators may be notified of
processing results via Notes Mail, and view the NotesPump server
processes from an SNMP management station.

Internet data queries

The NotesPump CGI program enables Web-based clients to query
NotesPump supported database sources.

NotesPump Applications

Data distribution
In the data distribution area, for instance, work order data volumes
generated from a customer service center maintained in a mainframe DBMS
may be transferred via the NotesPump server to field-based technical staff
using Lotus Notes. This is particularly useful to occasionally connected
users who do not have continuous network access to the DBMS server.
Conditions for transfer to specific staff regions may be specified through
NotesPump, providing rapid and frequent updates of specified information
from the customer service center to appropriate company technical staff
locations.

Data synchronization between dissimilar data sources
A corporation might maintain current and historical employee data in a
Human Resources DBMS. Data updates by employees are controlled via a
Lotus Notes application, permitting specified personal data changes to be
propagated to the Human Resources DBMS. Using the NotesPump
Replication Activity and Employee ID key common to both databases, data
is synchronized between the Notes Human Resource application and the
DBMS application. This ensures controlled and consistent updates to
company information.

Monitor data source transactions
Using the Polling Activity, the NotesPump server can be instructed to
monitor a data source for a change, such as an insert of a new sale over a
certain dollar amount. When the condition is met, NotesPump instantly
initiates a defined data transfer, such as propagation of the new amount to
another source and generation of a notification mail message.

Query DBMS information from the Internet
Using NotesPump CGI program support, Web-based clients may enter
their customer order number to a corporate Internet site location, and
electronically learn the status of their order.

468 Lotus Notes Release 4.5: A Developer’s Handbook

 Architecture

NotesPump is organized in the following structure:

NotesPump Server

NotesPump Administrator

Data Sources

NotesPump Components

NotesPump Server
The Notes Server is the location of the NotesPump Control Store — the
Administration database. It also holds the NotesPump Server’s processing
log database, and is the target and/or source for data transfer Activities.

NotesPump Engine
The NotesPump Engine provides the back-end interfaces to supported
databases. It controls NotesPump Activities as defined in the Notes Control
Store. The NotesPump Engine works as a multi-tasking data transfer pump
by executing multiple data transfer tasks concurrently. The processing is
monitored and logged into the NotesPump log database. Monitoring also
enables the NotesPump engine to re-execute Activities upon failure. The
NotesPump Engine can run on a Notes server as a co-resident process.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 469

NotesPump Administrator
The NotesPump Administrator consists of the Notes database containing
the information that NotesPump Servers need to function as well as the
Notes interface used to manage that database. The database contains all the
configuration, connection, and scheduling elements that NotesPump uses to
collect, transfer, and write data. The information in the database is also
known as the Control Store.

A single Administrator database can hold information used by several
NotesPump Servers, but each NotesPump Server can be governed by only
one Administrator database.

Because the Administrator is a Notes database, you update it by using the
Notes application interface and navigators to create, view, and edit
documents. These documents can be created through the Create menu in
Notes (once the Administrator database is opened on the Notes desktop)
or displayed through any of the views available in the View menu or
navigator. You can think of these documents as “work orders” that tell
NotesPump what to do and when.

Configuration documents

Define the NotesPump Administrator and the NotesPump Servers.

Link documents

Define the connections to the different data sources. The names and the
network locations of connected databases are specified here.

Activity documents

Define data transfer Activities. A wide array of scheduling and data
transfer options is provided with these documents.

470 Lotus Notes Release 4.5: A Developer’s Handbook

DBMS Servers
These are the actual DBMS servers which represent the target and source
for NotesPump data transfers. These NotesPump components are related as
shown below:

NotesPump Installation

The NotesPump server must be installed on a machine where native Notes
DLLs are already installed. The operation of NotesPump does not require
that this client or server be running.

During the installation the Administrator databases are stored on the Notes
server.

The NotesPump Server machine also requires the appropriate database
communication software, such as IBM DDCS, or CAE and Communications
Manager, Oracle SQL*Net, Sybase Netlib and ODBC, to be available to
connect to the respective DBMS required.

Installation Steps
The following steps guide you through the installation of NotesPump
Server:

1. Install the Program files from the installation media.

2. Check connectivity to your DBMS and Notes Sources and Targets by
using the respective test program supplied with NotesPump.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 471

Run the Setup Program to create the first NotesPump server and
NotesPump Administrator.

Start the NotesPump Server
When started, the NotesPump Server connects to the NotesPump
Administrator database and immediately runs any overdue activities. It
continues to poll the Administrator database, at the interval defined in the
Server Configuration document, to run Activities until it is shut down.

Start the NotesPump server by running lnpump.exe on a command prompt
window. The program screen is shown below. Several menu selections are
available to help you view Activities that are running, stop them, and also
stop the server.

472 Lotus Notes Release 4.5: A Developer’s Handbook

Tip If your Notes Server has a password, you must allow the server’s User
ID to share the password with add-in tasks like NotesPump. Do this by
clicking on the checkbox in the File - Tools - User ID dialog box as shown
below:

Terminology
Before you start creating NotesPump Activities and links, it is important to
clarify some of the terminology and its relationship between the DBMS
relational world and the Notes unstructured design.

In Notes, the data table of a relational database is comparable to a form or
view. The Notes form basically represents the definition of the data in a
table, while views are row-and-column displays of the data or of a subset or
superset of the data.

The relational database field or column finds its equivalent in Notes as a
form field or as a view column. Records are displayable in Notes either as
documents (defined by a form) or as rows in a view.

Here is a set of the terms important to work with NotesPump, and their
definitions:

Column A set of similar data such as phone numbers or customer names,
usually displayed in column format. A column contains the fields having
the same position in the data records of a table. In a Notes view, fields
appear in a column presentation.

Database A collection of metadata and data. For example, a Notes file and
forms within.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 473

Document A Notes document is a database entry that contains
information. It is the equivalent of a database row and appears in row
format in a view.

Field A specific kind of data represented in Notes as an item within a form
or document.

Form A Notes form defines the fields and data types in a set of documents
in a Notes database.

Metadata A defining unit of data such as a database table, a data file, a
Notes form, or other.

Record An element of data within a table, represented as a row and
equivalent to a Notes document.

Result set The set of data resulting from a selection operation: for example,
the data to be transferred after being selected through a Notes select
statement or SQL statement.

Row An element of data in a table represented as a line of information.

Statement A Notes formula, SQL query or other language string that can
be executed against Notes or relational data. A selection statement
produces a result set, while other statements modify data.

Table A set of data in a relational database, presented in row and column
format.

View A Notes view displays a list of documents with selected fields. The
list can be categorized — placing documents in pre-established categories
— and hierarchical. In other databases a view is a customized presentation
of data from one or more tables.

Terminology Comparison

Type Relational DB Notes

Database Database Database (.NSF file)

Metadata Table Form/View

Field Column Field/Column

Record Row Document/Row

Statement SQL query Selection formula

474 Lotus Notes Release 4.5: A Developer’s Handbook

NotesPump Administration

NotesPump can be managed from any platform supported by Notes,
including UNIX, Macintosh, Windows NT, Windows 95 and OS/2.
The Notes client is used as the base for system control.

The Administrator database configures and controls NotesPump Servers
and their Activities. It contains all the configuration, connection, and
scheduling elements that NotesPump uses to collect, transfer, and write
data. The information in the database is also known as the Control Store.

The NotesPump navigator for administering the NotesPump Server looks
like the following :

The elements of the Administrator database (or Control Store) fall into three
basic categories that correspond to different aspects of the NotesPump
process:

Configuration

The Administrator database contains configuration information that
governs basic aspects of each NotesPump Server that uses that
Administrator. A NotesPump Server is one that executes NotesPump
Activities. The information applies to all Activities that run on the
server.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 475

Link

The Administrator also holds Link information that defines a
connection to the data servers and databases that NotesPump needs to
access for transferring data. Link information can be shared by many
Activities.

Activity

The Activity contains instructions for the NotesPump Server and as
such it is the central element of NotesPump. Activity information in the
Administrator database tells a NotesPump engine what to do, when to
do it, and how. NotesPump can execute several kinds of Activities to
move and manage data.

Configuration Documents
Two types of Configuration documents are provided:

Administrator Configuration

Each NotesPump Administrator database contains a single
Administrator Configuration document. It identifies the Notes server
on which the NotesPump Log database is installed, the file path of the
Log database itself, and the interval in minutes at which each running
NotesPump server must notify the Administrator database of its status.

Server Configuration

The Administrator database contains one Server Configuration
document for each NotesPump server that it controls. This server
document contains the following information:

The Current Status of the server

The Last Broadcast received from the server

The Server Name

The Poll Interval — the interval at which the server polls the
Administrator for any Activities that should be run

The Maximum Number of Activities — the greatest number of
concurrently running Activities

The Maximum Duration of Activities — the longest duration allowed
for an Activity before it is closed by the server

The Maximum Consecutive Failures — the number of consecutive
failures that an Activity can have before it is disabled by the server

476 Lotus Notes Release 4.5: A Developer’s Handbook

The Activity Requested Shutdown Time-out — the amount of time
allowed for an application to obey a Close command before it is
terminated

International Character Translation — Enabled/Disabled

Link Documents

Link documents are created to establish connectivity to the target of a
transfer. When Activities are created, a link to a target database must be
chosen from the existing set of links. The Link information will then be
copied into the Activity document.

The set of information required in the Link document varies for the
different database products. For example, a link with an Oracle database
whose instance name is Mill would look like this:

Chapter 18: High Volume Data Transfer With NotesPump 2.0 477

Link Options Documents
Link Options documents can be created during the course of building an
Activity. They define rules for selecting, manipulating, and writing data by
a single Activity, based on the type of system. For example, the Link
Options for an Oracle Link Document are shown below:

Activity Documents

Activity documents contain the information that instructs the NotesPump
Server to execute an Activity. Each Activity type has its own specific form:

478 Lotus Notes Release 4.5: A Developer’s Handbook

Admin-Backup Documents

Back up Administrator database data.

Admin-Purge Log Documents

Purge the NotesPump logs.

Command Documents

Execute an action against a database.

Direct Transfer Document

Transfers data from one database to another.

DPROPR Document

Transfers data from a Data Propagator (DPROPR) Consistent Change
Data (CCD) staging table in a relational database to a Notes database.

Polling Document

Polls a database to see if a specified condition exists, and, if so, executes
an Activity.

Replication Document

Synchronizes data in different databases.

Scripted Document

Executes an Activity whose data sources and function are defined by a
LotusScript script.

While building an Activity, you’ll be able to choose Link information from
existing Link documents. You should therefore create any Link document
that you intend to use before you create the Activity.

Although each of the Activity documents contains information specific to
the type of Activity, the Scheduling section is common to all of them.

Defining Common Areas of Activity Documents
The following areas are common to each of the Activity Documents. Let’s
look at these areas so that we are familiar with what is in each of them.

Last Completed Run Information
Displays the status of the last run of the Activity.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 479

Activity Options
Define general Activity settings, such as the server to run the Activity on,
logging options, any dependent tasks, and priority of the Activity.

Scheduling Information
This section defines when and how the Activity will be run. Many
different settings are available, to give you flexibility in scheduling. If you
want to transfer some information on a one-time basis, check the Run Once
check box.

480 Lotus Notes Release 4.5: A Developer’s Handbook

Admin-Backup Activity Document

An Admin-Backup administration Activity can be used to back up the
Administrator database. You can specify a different server and database
name for the backup Activity so it can be used if recovery is required.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 481

Admin-Purge Log Activity Document

An Admin-Purge Log Administration Activity can be used to purge the log
of documents older than a given number of days. Depending on the logging
options you chose in the configuration document and the number of
Activities defined, you may need to purge the NotesPump log database. In
the example below the database administrator would purge documents
older than ten days.

Direct Transfer Activity Document
A Direct Transfer Activity transfers data from one database to another. The
data to be transferred is identified by a statement, for instance, an SQL
query or a Notes selection formula. It can be run once using the Run ASAP
button or the task can be scheduled. The Direct Transfer document contains
the following information needed for a transfer Activity:

Links indicating the source and destination databases and metadata

Command statements for selecting the data to be transferred

Options controlling the treatment of the data

Scheduling

482 Lotus Notes Release 4.5: A Developer’s Handbook

Source and destination databases, including access information, must be
defined in Link documents before the Direct Transfer Activity is created.

Follow these steps to fill in the Direct Transfer Activity document:

1. Select the Source and Destination Links:

2. Enter the metadata information. For example, the table name in an
Oracle Source and the Notes Form in a Notes database, according to the
links chosen above:

Chapter 18: High Volume Data Transfer With NotesPump 2.0 483

3. Choose the Direct transfer options. It is important to consider the type
of target you will write to. For example, when taking Notes text fields
and placing them in Oracle fields, you may want to choose truncation
of data as in the example below:

4. Set the Activity and schedule options based on your requirements, and
save the Activity.

5. Check your scheduling settings, by looking at the Current Status section
in the Document. It will tell you the next time the Activity will run.

Polling Activity Document

Polling is a way of causing a subordinate Activity (such as a Direct Transfer
or Replication) to execute when a condition is met. The Polling document
itself does not contain the Activity to execute. Instead, it triggers Activities
that are configured in separate Activity documents.

The Polling document contains all information needed to execute
subordinate Activities:

Link — the link to the target

Condition under which the subordinate Activities — the Activities to
Execute — will be run

Scheduling

Polling frequency

Activities to be executed — synchronously or not

Post statements commands to run before or after the Activities

484 Lotus Notes Release 4.5: A Developer’s Handbook

For example, to check for new enrollments in Notes in the Millennia
database, we set up a polling Activity which checked for new documents
having been created. If new documents were found, Activities to place the
enrollment data into Oracle were run synchronously and then a Notes agent
ran on the database to delete those documents.

Replication Activity Document
Two types of replications are supported:

Primary Key replication

Primary Key/Timestamp replication

Primary Key replication
NotesPump primary key replication replicates data based on a key that can
comprise one or more specific fields in the data table. The fields must exist
in both tables (A and B). The function of the primary key is to determine
whether a mismatch of records requires an update to a record, the insertion
of a new record, or a record deletion.

The database master identified in the Activity document as the master
contains the data that “wins” any replication conflict and from which the
other is replicated in Primary Key replication and (under certain conditions)
in Primary Key/Timestamp replication.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 485

When the replication takes place, records are updated according to the
following rules:

Record is identical in both databases: no update to the record.

Record doesn’t match but the primary key is identical: the record in the
master database updates the one in the non-master database.

A primary key value exists in the master database but not in the other:
The record from the master database is inserted in the other database.

A primary key value exists in the non-master database but not in the
master: The record from the non-master database is deleted.

Note Because no information beyond the primary key is available, all
mismatches are regarded as conflicts. Since in the case of conflicts, the
master data overwrites the non-master, the master always prevails in a
primary-key-only mismatch.

Tip Deletion of records from the non-master database can be prevented by
checking the option Do Not Replicate Deletions in the Replication Activity
document.

Primary Key/Timestamp Replication
If the database tables involved in the replication contain timestamp fields
and these fields are identified in the Activity document, NotesPump
performs Primary Key/Timestamp replication. In that case the following
process is used to replicate:

1. NotesPump creates two result sets (one for each database) that include
only those records that have changed since the last replication, based on
the timestamp field.

2. NotesPump then matches primary keys, and:

If both master and non-master records are found, the master record
updates the other.

If only one record is found (either master or non-master),
NotesPump attempts to locate the primary key in the other database.
If the other key is found, the changed record updates the one that
was not changed. If the other key is not found, a copy of the changed
record is inserted into the other database.

Note Because NotesPump looks only at changed records, deletions are not
replicated if a record is deleted from one database and the matching record
in the other database remains unchanged.

486 Lotus Notes Release 4.5: A Developer’s Handbook

For example, to replicate courses existing in an Oracle database to a Notes
database, the primary components of the document are shown next.

The Replication settings for Source and Destination Links are then set up.
Notice the fields are explicitly defined.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 487

The Replication Options will create a new Notes form if needed. Since we
want the Oracle database to always be the master, the Do Not Replicate
Deletions check box is not checked. This way any documents with a key
not in Oracle will be deleted, and the two systems will be synchronized.
We could also set the Reduced Precision option to avoid false mismatches
based on differences in the way a particular DBMS stores floating point,
timestamp, and datetime values, as opposed to another DBMS system
or Notes.

DPROPR Activity Document
A DPROPR Activity transfers data from an IBM Data Propagator
(DPROPR) Consistent Change Data (CCD) staging table in a relational
database to any NotesPump data source. The data to be transferred consists
of changes to IBM DB2 tables.

The DPROPR Activity document contains information needed for a
DPROPR transfer Activity:

Links indicating the source and target database and metadata

Options controlling the treatment of the data, in normal and error
recovery situations

Scheduling

488 Lotus Notes Release 4.5: A Developer’s Handbook

Source and target databases, including access information, must be defined
in Link documents before the DPROPR Activity is created.

CCD table name The CCD table is a DB2 relational table — specifically a
condensed, complete, Consistent Change Data table created by a DPROPR
subscription or another mechanism.

Key Fields The fields or columns of the data that together represent a
unique primary key for that data collection. No two records can have the
same value for all key fields, and at least one key field is required. The
target key field will be defined to be the same as the source key field.

Conditional Clause Used to further refine the Replication Activity. May be
used to specify additional clauses to be used in the selection of rows from
the CCD table, for example, Dept=7.

Target Metadata Specifies a Notes form or RDB table where data will be
stored.

Force Full Refresh Resets the Sequence ID used by DPROPR to determine
what changes to replicate. Resetting this ID and running the Activity causes
a full refresh of the target Notes metadata.

Note NotesPump does not transfer the CCD internal columns
IBMSNAP_INTENTSEQ, IBMSNAP_OPERATION,
IBMSNAP_COMMITSEQ, and IBMSNAP_LOGMARKER unless you
specify them in the field mapping.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 489

For more information about IBM DataPropagator Relational,
search on DataPropagator Relational from the IBM home page:
http://www.software.ibm.com. Or dial 1-800-IBM-3333 for more
information on IBM products and services.

 Scripted Activity Documents

If you want greater control of the NotesPump data transfer process, you
can create a programmable Activity to interact with the data. NotesPump
provides the Scripted Activity for this purpose.

A sample scripted Activity document follows:

The Script section of the document identifies the LotusScript code that the
Activity will use. By identifying the Agent server and database, you tell
NotesPump where the agent containing the script can be found and run. If
your script is small enough, click on the Script check box and enter the code
in the Code field.

The Scripted Activity document also has the scheduling and server tuning
features found in the other Activities. However, since the processing of data
is expected to be done through LotusScript, the Activity does not have a
section for links and metadata processing.

Through the NotesPump extensions to the LotusScript language, data may
be queried, modified, normalized, etc. These extensions provide access to
servers, databases, tables, records, fields, and other metadata.

490 Lotus Notes Release 4.5: A Developer’s Handbook

In a simple transfer of data from one database connection to another, the
script connects to the two points, selects the data of interest, and then
fetches from one and inserts into the other. More complicated actions such
as data massaging, replication conflict resolution and multi-point data
manipulation are all possible.

A NotesPump scripted Activity is developed with the following
programming flow:

Initialize Activity

Create Connection to Data

Connect to Database

Select Data of Interest

Fetch Data

Manipulate Data

Insert Data

Disconnect

Using NotesPump Extensions
To use the NotesPump extensions to LotusScript, include the NotesPump
LSX within a scripted agent. This is accomplished with the UseLSX
statement. The NotesPump installation registers its LSX so that the
following platform independent syntax may be used within a scripted
agent’s “options” section:0

UseLSX "*lnplsx"

For your agent to execute, Notes and NotesPump need their program
directories on the system path. Notes requires the NotesPump program
directory to be on the path so the IDE may load the LSX for authoring and
testing of the agent. NotesPump requires the Notes program directory to be
on the system path so that the agent may be executed as part of the scripted
Activity.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 491

The following figure shows the effect of using the UseLSX command above.
Notice the NotesPump classes available to the LotusScript agent in the IDE
browser pane.

You can test the agent through the Lotus Notes IDE by turning the Debug
LotusScript option in the File - Tools menu.

Tip When you create the agent, make it shared with these settings:

Select either “manually from the Actions Menu” or the “manually
from the Agent List.”

Select Run Once.

LotusScript Extensions
The following are the classes available for your agent’s LotusScript code
when you load the LotusScript NotesPump Extensions. Please refer to the
book “NotesPump Extensions to the LotusScript Language” for a more
detailed list of the class methods and properties. An example of the use of
these classes is presented following the class descriptions.

NP Activity class
Each Activity has global state information which is managed by
NotesPump. This state is used to manage Link libraries and connections,
allocated objects, error and event information, count logs, and
communications with the NotesPump Server.

492 Lotus Notes Release 4.5: A Developer’s Handbook

NPConnect class
Connect functions manage individual Link connection contexts within an
Activity. The Connect class enforces Link state and requirements, and must
always be used when interacting with Links. One connect object should
exist for each individual data connection through a Link used in an
Activity. The Activity context includes error handling, which is also
available to Links. Error information may be added by the Link or the
calling Activity with the NPActivityLog functions. Connect functions
automatically update information on counts of records affected and
functions called in the Activity context. This information is logged at
Activity termination.

NPCurrency class
A currency value is represented by object NPCURRENCY. The value is an
8-byte integer with a fixed scale of 4, providing 19 digits of precision.
Currency is commonly used when complete precision is required, such as
for monetary amounts. A currency is much more precise than an integer,
more precise than a float, and more efficient than a numeric. Note that
during any currency overflow, the maximum or minimum valid currency
value is assigned in addition to the error generated.

NPDatetime class
A datetime value is represented by the object NPDATETIME. A datetime
value represents a specific date and time, including timezone and daylight
savings time information. A datetime value may have either its date or time
component unavailable, indicated by special constant values for date
(NPDTNULL_DATE) or time (NPDTNULL_TIME) components. During
any datetime overflow, the maximum or minimum valid datetime value is
assigned in addition to the error return.

NPField class
A field is a data object containing one or more data values of a designated
data type. A field is represented by the handle type NPFIELD.

A field instance contains the following information:

Data Type

One of the NotesPump datatypes. Assigned at creation and cannot be
changed.

Value Count

One or greater. Data space for the value specified and NULL indicators
will be allocated. The value count is automatically assigned for fields in
a FieldList based on the FieldList record count (see Fieldlist
description). Assigned at creation and cannot be changed.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 493

Field Flags

Zero or more field flags OR-ed together. See Field Flags description
below. May be changed at any time.

Format

Data-type specific data source format information. See Field Format
description below. May be changed at any time, although changes to
the format clear all data values for the field.

Virtual Code

Link or Connection virtual code. May be changed at any time.

Data

For each value of this field (see Value Count), a single data value and
NULL indicator are allocated. These values are stored separately, but
for a multi-value field, the values and indicators for consecutive field
value indices are stored in consecutive memory.

NPFieldlist class
A fieldlist represents metadata for a record and may contain data for one or
more record values. A fieldlist is a list of fields and field names with
supporting functions. Fields within a fieldlist can be added, modified,
retrieved, or listed in multiple ways. A fieldlist is represented by the handle
type NPFIELDLIST.

A fieldlist instance contains the following information:

Sequence Number

A number which is unique across all fieldlists and all variations of a
single fieldlist. See Fieldlist Sequence Number description below.
Dynamically altered by the API.

Record Count

Zero or greater. Data space for this many data values per field will be
allocated. The record count is assigned as the value count for all fields
added to this fieldlist. A value of zero indicates a fieldlist which
contains no data, but is used solely for field name tracking and fieldlist
merging. See Fieldlist Merging description below. Assigned at creation
and cannot be changed.

Default Field Flags

Default NPFIELDF_XXX flags which are assigned to all new fields
added to the fieldlist. This is commonly NPFIELDF_TRUNC_PREC to
allow precision loss only. Assigned at creation and cannot be changed.

494 Lotus Notes Release 4.5: A Developer’s Handbook

Field Count

Number of fields currently in the fieldlist. This changes to reflect all
fields added to or removed from the fieldlist.

Field Array

List of fields in the fieldlist. All fields allocated by the fieldlist are
contained in this list. These fields are owned by the fieldlist and are
freed with the fieldlist, not with NPField Destructor. Fields are added
to a fieldlist with NPFieldlistAppend and NPFieldlistInsert; replaced
with NPFieldlistReplace; and removed with NPFieldlistRemove.

Field Name Arrays

These lists contain the field names for each field in different stream
formats. For efficiency, field names may be cached in multiple stream
formats, when requests for field names from a fieldlist occur in multiple
stream formats. For example, if a fieldlist is sent to two Links, one using
IBM Code Page 932 and the other using the LMBCS character set, the
fieldlist retains both formats of field names.

NPFloat class
A float value is a standard IEEE 8-byte floating-point value. Normal
manipulation of these values should be performed using native language
functionality.

The only additional functions supported by the NP API convert float values
to and from currency, numeric, and stream data types.

NPInt class
An integer value is a standard IEEE 4-byte signed integer. Normal
manipulation of these values should be performed using native language
functionality. The only additional functionality supported by the NP API is
conversion to and from streams.

NPNumeric class
A numeric value is represented by the object NPNUMERIC, containing a
precision, scale, and variable number of digits. Numeric values have a
specific precision and scale, and can accommodate high-precision numbers.
Before being used, a numeric value must either be zeroed or created using
NPNumeric.Create. A zeroed numeric submitted to any other numeric
function is initialized to a precision of 88 and a scale of 44. Note that during
any numeric overflow, the maximum or minimum valid numeric value is
assigned in addition to the error return.

For a numeric to be valid, it must have valid values for precision and scale
settings. A numeric can be initialized with NPNumericCreate. If precision
and scale are not valid for a numeric submitted as a parameter to a
Numeric function, then an error may be generated. If the invalid numeric

Chapter 18: High Volume Data Transfer With NotesPump 2.0 495

has been zeroed, then it will be automatically initialized to a numeric with
the maximum precision and a scale of precision/2 (44). If the invalid
numeric has not been zeroed, then an NPFAIL_INVALID_NUMERIC error
will be returned.

NPStream class
A stream represents two of the seven NotesPump datatypes, text and
binary. A stream value is a variable length list of characters or bytes.
Streams come in two basic types, text and binary, represented by the
corresponding NotesPump data types. Specific format information
indicates either the character set (for text) or the binary format (for binary).
No NPStreamData functions should be called until the stream has been
zeroed, NPStreamClear has been called, or NPStreamCreate has been
called.

Example: Scripted Activity
What follows is a simple example showing how LotusScript may be used to
handle processing for NotesPump Scripted Activities.

In this example, we need to bill US travelers for purchases from around the
world. Each record contains a product description, the country of origin,
and a cost in the country’s currency. We wish to bill these items; however,
we must bill them in US dollars.

We will first locate the up-to-date exchange rates for the currencies we will
process. Next we will use the direct transfer script. Remember, a direct
transfer simply connects to source and target databases, selects a set of
records from the source, then fetches those records from the source and
inserts them into the destination.

We add a little data processing to the transfer. After we fetch the record
from the source database, we check the country of origin, then, using the
corresponding exchange rates, we convert the product cost to US dollars,
and insert the record into the target database. As an added feature, we
update the source record to indicate that the transaction has been
processed.

Scripted Activity Code Example
'**(Options)
Option Explicit
'** UseLSX command loads NotesPump extensions to LotusScript
Uselsx "*lnplsx"

'**(Forward)
Declare Sub Initialize
Declare Sub GetExchangeRates (Rates As NPField)
Declare Sub BillTransactions (Rates As NPField)

496 Lotus Notes Release 4.5: A Developer’s Handbook

'**(Declarations)
Dim SectionName As String '** we use this to track the
section of script which is active, this improves our error
handling / reporting
Dim State As NPActivity

'** the following constants must be changed to correspond to
real Activities, links and database tables
Public Const ACTIVITY_NAME = "Name of This Activity Goes
Here"
Public Const RATES_LINK = "Name of Exchange Rates Link Goes
Here"
Public Const RATES_METADATA ="Name of Exchange Rates Table
Goes Here"

Public Const SOURCE_LINK ="Name of Source Link Goes Here"

Public Const DESTINATION_LINK ="Name of Destination Link Goes
Here"

Public Const SOURCE_METADATA ="Name of Source Table Goes
Here"

Public Const DESTINATION_METADATA ="Name of Destination Table
Goes Here"

'** The Initialize subroutine is the main body of the script.
Sub Initialize

'** the very first code in a LotusScript program should be an
error handler. This will help to develop and test the script.
The error handler for this script is located at the end of
the Initialize subroutine and is available to the rest of the
module to aid in the tracking of errors, we also use a global
string to track the section which is currently active. In
case of an error, the error handler uses this string to
indicate more exactly where the problem occurred

On Error Goto LSErrorLabel
SectionName = "Initialize"

'** Before any NotesPump objects may be used, an NPActivity
context must be created. This provides all of the logging and
administration required by the rest of NotesPump and the
other NotesPump objects you may create.

Set State = New NPActivity (0, ACTIVITY_NAME)

Chapter 18: High Volume Data Transfer With NotesPump 2.0 497

'** Now we get down to business ...
'** We locate all of the exchange rates needed to process the
'** received transaction so that they may be billed in US
'** dollars. Connect to the exchange rate database

Dim Rates As New NPField (NPTYPE_FLOAT, 6)
GetExchangeRates Rates

'** we locate all of the transactions which have been
received and must now be billed.

BillTransactions Rates
'**we have completed without an error, so we are finished

Goto ResumeLabel

LSErrorLabel:
Dim MessageString As String
MessageString = "Error at line " & Cstr(Erl()) & "

in section " & SectionName

If (State Is Nothing) Then
Print MessageString

Else
Dim ErrorStream As New NPStream
ErrorStream.AsLsString =

MessageString
State.LogStream 0, ErrorStream, Err()

End If

Resume ResumeLabel

ResumeLabel:
'** we do not need to explicitly delete any of the objects we
have created. LotusScript will handle clean up as objects go
out of scope. Done

End Sub

'** GetExchangeRates subroutine opens an Oracle table which
contains the most recent currency exchange rates for a set of
countries. These rates are store in an array to be used later
to convert foreign currency totals to US dollars

Sub GetExchangeRates (Rates As NPField)
Dim SavedSectionName As String
SavedSectionName = SectionName
SectionName = "GetExchangeRates"

498 Lotus Notes Release 4.5: A Developer’s Handbook

'** create a link to the Oracle database
Dim RateSource As New NPConnect (0, RATES_LINK

Dim KeyName As New NPStream
Dim Keys As New NPFieldList (1,0)
Dim SearchKey As Variant
Dim Record As NPFieldlist
Dim Count As Long
Dim Index As Long

'** using the expanded properties of the Oracle
'** connection, we specify which table contains
'** the records of interest
RateSource.Metadata = RATES_

'** we now connect to the Oracle database and
'** table

RateSource.Connect

'** Here is an example of using a selection key
'** for locating records.
'** We create a lookup key list to locate each
'** exchange rate. The search key list is built
'** and then the value to search for is assigned
'** inside the loop below

KeyName.AsLSString = "REGIONID"
Keys.Append KeyName, NPTYPE_INT, SearchKey
SearchKey.SetFlags (NPFIELDF_KEY)

For Index = 1 To 6
Set Record = New NPFieldList (1, 0)

'** set up the key for our search
Rates.ValueIndex = Index
SearchKey.AsLSLong = Index

'** now that we have defined the
'** search key, we locate the
'** corresponding record
RateSource.Select Keys, 1, Record,
Count
If ((Count = 0) Or ((Count =
NPCOUNT_UNKNOWN) And (Record.GetCount
= 0))) Then Goto CleanUp
'** now we fetch the record
RateSource.Fetch Record, 1, 1, Count

Chapter 18: High Volume Data Transfer With NotesPump 2.0 499

'** Rate will be stored internally as NPFLOAT
'** since the field was defined that way
Rates.AsLSString = Record.ExchangeRate

'** reset record
Delete Record

Next
CleanUp:
SectionName = SavedSectionName

End Sub

'** the BillTransactions subroutine opens an Oracle table
which contains the unprocessed transactions. Using the
exchange rates, extracted previously, the orders are
converted to US dollars and then stored in the target table

Sub BillTransactions (Rates As NPField)
Dim SavedSectionName As String
SavedSectionName = SectionName
SectionName = "BillTransactions"

'** create two links to the Oracle database we
'** will differentiate them below by indicating
'** different tables

Dim Source As New NPConnect (0, SOURCE_LINK)
Dim Destination As New
NPConnect(0,DESTINATION_LINK)

Dim KeyName As New NPStream
Dim Keys As New NPFieldList (1, 0)
Dim SearchKey As Variant
Dim Record As New NPFieldlist
(1, NPFIELDF_TRUNC_PREC)

Dim Total As New NPField (NPTYPE_FLOAT, 1)
Dim TState As New NPField (NPTYPE_TEXT, 1)
Dim RegionID As New NPField (NPTYPE_INT, 1)

Dim Count As Long
Dim Index As Long

'** indicate which table contains the unprocessed
'** transactions
Source.Metadata = SOURCE_METADATA

500 Lotus Notes Release 4.5: A Developer’s Handbook

'** we write-back updates to the source indicating the
'** transaction has been processed
Source.Writeback = "1"
'** connect to the transactions databases
Source.Connect

'** indicate which table receives the completed
'**transactions
Destination.Metadata = DESTINATION_METADATA

'** connect to the billing databases
Destination.Connect

'** this is an example of executing a database
'** specific selection formula.
'** In this example it is an Oracle SQL statement

Dim Statement As New NPStream
Statement.AsLsString = "Select * FROM

 INTERNATIONALSALES WHERE TSTATE = 'Entered'"
Source.Execute Statement, Record, Count

'** this is an example of using a selection key
KeyName.AsLSString = "TState"
Keys.Append KeyName, NPTYPE_TEXT, SearchKey
SearchKey.SetFlags NPFIELDF_KEY
SearchKey.AsLsString = "Entered"

Source.Select Keys, 1, Record, Count

If ((Count = 0) Or ((Count = NPCOUNT_UNKNOWN) And
(Record.GetCount = 0))) Then Goto CleanUp

'** We wish to perform data massaging, so we

'** locate the field(s) of interest from the x
'** loop. Since the field positions within the
'** do not change, fetched data from a link within
'** the fieldlist loop will be available in the
'** fields you lookup here. This eliminates the
'** loop.lookup process within the

Record.Lookup "Total", Total, 0
Record.Lookup "TState", TState, 0
Record.Lookup "RegionID", RegionID, 0

'** Loop through load-store sequence
Source.Fetch Record, 1, 1, Count
If (Count = 0) Goto CleanUp

Chapter 18: High Volume Data Transfer With NotesPump 2.0 501

'** We don't care if the table exists in these
'** nextlines so we will start to ignore NotesPump
State.RaiseExceptions = False
errors
'** Un-comment the following lines if you wish to

 '** the target table
'** Destination.Create NPOBJECT_METADATA, Record
'** if the table has already been created, don't
'** of it as a fatal error
'** thinkState.ClearStatus

'** Un-comment the following lines if you wish to
'** truncate the target table
'** Destination.Action NPACTION_TRUNCATE
'** State.ClearStatus

'** Now restore the automatic handling of
'** errors
State.RaiseExceptions = True

'** Now we loop through each unprocessed
 transaction

While (Count > 0)
'** We wish to perform data massaging, so we now
'** effect the fields we located above. First we
'** mark the new transaction as processed so we
'** don't bill it twice

Tstate.AsLSString = "Processed"
Source.Update Record, 1, 1, Count

'** Now we locate the correct exchange rate for
'** this transaction's origin, and convert the
'** total

Rates.ValueIndex = RegionID.AsLSLong
Total.AsLSDouble=Total.AsLSDouble /

502 Lotus Notes Release 4.5: A Developer’s Handbook

'** Rates.AsLSDouble now we store the data in the
'** target table
Destination.Insert Record, 1, 1, Count

'** Finally, we fetch another record and repeat
'** the loop

Source.Fetch Record, 1, 1, Count
Wend

CleanUp:
SectionName = SavedSectionName

End Sub

Activity Field Matching
During a Direct Transfer, Replication or DPROPR Activity NotesPump
maps columns in the source and target databases in one of three ways: by
position, by field name or by selective mapping.

According to field position

 Data in the first field of the source result set is copied into the first field
of the target database, and so on. If the command statement in the
Activity selects a subset of columns from the database table, they will
be treated as a simple incremental series starting with 1. The order in
which the columns are listed in the selection statement is the order in
which they will be transferred. The SQL statement “SELECT column6,
column4, column7 FROM table” maps column 6 of the source to field 1
of the target, column 4 to field 2, and column 7 to field 3.

According to field names

Data is transferred from a field in the source database to a field of the
same name in the target. If the Activity’s command statement is an SQL
query, you can use column aliases to match the source field to the
destination: for example “SELECT empno employee” maps the empno
field in the source to the employee field in the target.

Note The actual expression depends on the database SQL syntax.

According to selective mapping

Field names are provided by the user for both the source and target,
and are mapped in the order provided. For example, source fields listed
as “A, B, C” and target fields listed as “X, Y, Z” result in source field A
moving to target field X, B to Y, and C to Z.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 503

When Field Numbers Don’t Match
Since Replication requires the same number of columns in both databases,
mismatching numbers of columns only affect Direct Transfer and DPROPR.

More columns in the source result set than in the target metadata

The transfer will fail and you’ll get an error message.

Fewer columns in the source result set than in the target metadata set

The transfer will succeed and the “orphan” columns in the target will
be filled with null values. If the target database cannot accommodate
nulls, the transfer will fail and you will get an error.

Administrator Views
The Administrator is provided with different views of the Administrator
database in order to ease setup, controlling, and status checking. The
following views are available:

Log Views and Documents
The NotesPump Log records all events. The logged document types are:
Activity, operation, and server.

Each log document records a separate event, such as an Activity from start
to end.

504 Lotus Notes Release 4.5: A Developer’s Handbook

Log Views
Log documents can be listed through this view:

All by Server — Lists all Activities categorized by server. Under the
server name, documents are categorized by start date.

All by Type — Lists all Activities categorized by type (Activity,
operation, and server). Documents are further categorized by server
and start date.

Log Documents
There are three types of Log Documents. They record Activities, Operation
events, and Server events.

Activity
The Activity log document lists event and status information associated
with an Administration, Direct Transfer, Polling, or Replication Activity.

Operation
The Operation log document lists errors that occurred in the NotesPump
application.

Server
The Server log document lists server events, such as startup, termination,
Activity execution, and any server termination error conditions.

NotesPump Agents

Three agents are supplied with NotesPump to allow for manipulating
Administration database documents by either the Administrator or the
NotesPump System.

RunASAP
RunASAP causes a selected Activity to be run as soon as possible. It is the
equivalent of the RunASAP button in the Activity document.

ClearLock
The ClearLock agent clears an Activity document’s Lock field and related
fields so that the Activity can be run again.

DeleteOrphanOptions
DeleteOrphanOptions marks for deletion those Link Options documents
that are orphaned because the Activity documents with which they are
associated were deleted.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 505

About Scheduling

Data transfer Activities can be scheduled for repetitive days, times, or
selections of times. Multiple Activities can be scheduled to execute as
dependent processes. In addition, advanced scheduling options can be
constructed to allow the execution of an Activity based on time-sensitive
business conditions. An example of this flexibility would allow NotesPump
to run an Activity on the last five business days of the month.

Running an Activity From the Command Line
NotesPump allows Activities to be executed from the system command line
of a running NotesPump server. This feature allows programs with the
ability to execute system commands, to start NotesPump Activities. The
syntax for starting a NotesPump Activity from the command line is as
follows:

LNPACT " ActivityName "

The NotesPump server only runs Activities which have been scheduled
from the Administrator (including those which have been marked Run
ASAP). Also, when an Activity is running from a NotesPump server, it will
not run simultaneously on that or any other server until it has completed its
current execution. This is referred to as “exclusive” execution. In contrast,
when an Activity is started from the system command line, its execution
may be “shared.”

This means that the Activity may be run more than once simultaneously. At
first this may not seem very safe or useful but there are special cases where
this is important; performing searches for an Internet Web application or
generating reports are two examples where the “shared” execution is
valuable.

Common Gateway Interface for NotesPump
NotesPump ships with a Common Gateway Interface which allows it to be
integrated into enterprise Internet/Intranet Hypertext Transfer Protocol
(HTTP) servers for Web applications. Using the NotesPump CGI provides
Web clients controlled access to any NotesPump supported database. The
interface acts much like the system command line interface, LNPACT.
When the CGI is launched via a web server, all of the fields of
corresponding HTML form become extended properties of the Activity (see
the NPActivity class description in the NotesPump LSX documentation for

506 Lotus Notes Release 4.5: A Developer’s Handbook

an explanation of extended properties). After creating an HTML form,
simply use the syntax for the POST command as follows:

<FORM METHOD="POST" ACTION="ACTCGI.EXE?ActivityName ">

A diagram showing the flow of such an Activity is shown below.

Chapter 18: High Volume Data Transfer With NotesPump 2.0 507

Chapter 19
Accessing Transaction Systems
Using MQSeries

This chapter describes the MQSeries Link for Lotus Notes product line. It
covers the following main components:

IBM MQSeries™ link for Lotus Notes and CICS™ link for Lotus Notes

IBM MQSeries™ link Extra for Lotus Notes

MQSeries link for Lotus Notes Extension (MQLSX)

These components enable the integration of Notes environments with
enterprise transaction oriented systems like CICS and MVS.

About MQSeries

A solution that effectively integrates transaction systems with new
client/server systems is required. It needs to preserve and leverage the
strengths of each platform with minimal tradeoffs in functionality and
ease of use:

Support for transaction processing monitor system

Single environment with transparency of platforms

Reliability

Mobile support

Cost effectiveness

Support for standards

Accessibility

MQSeries products enable applications to use message queuing to
participate in message-driven processing. With message-driven processing,
applications can communicate across the same or different platforms, by
using the appropriate message queuing software products. For example,
MVS/ESA and OS/400 applications can communicate through MQSeries
for MVS/ESA and MQSeries for OS/400 respectively. With MQSeries
products, all applications use the same kinds of message headers;
communications protocols are hidden from the applications. There is an
ever-growing number of platforms on which MQSeries is supported

Chapter 19: Accessing Transaction Systems Using MQSeries 509

(currently about 20). Once connected through the respective links, the
different operating systems, networks, etc. are transparent to the user of
the application.

MQSeries products are designed for assured message delivery. Processing
is such that when messages are being transmitted to remote queue
managers, the messages are moved in discrete transaction units, or batches,
where confirmation of receipt is always obtained before a particular
message is deleted at the transmitting queue manager. To achieve this, the
sending and receiving ends of the link commit batches of messages in
unison.

Where Does Lotus Notes Fit?
Lotus Notes applications are designed to manage unstructured data. Many
organizations have identified the requirement to integrate Notes with
host-based transaction processing systems. This has several advantages:

Extends access to existing host transaction applications to Notes

Provides users with a single point of access to these systems and to
client/server applications

There are three different forms of integration technology currently available
to achieve this purpose:

1. User-initiated transaction access:

IBM MQSeries™ link for Lotus Notes, CICS™ link and CICS link extra
for Lotus Notes

2. Host-initiated transaction data download:
IBM MQSeries™ link Extra for Lotus Notes

3. LotusScript Extension:
MQSeries link for Lotus Notes Extension (MQLSX).

These technologies remove the constraints of partial solutions, providing an
IS organization with robust, transaction-oriented solutions for integrating
their applications systems with Notes. These components leverage existing
transaction processing systems, requiring no changes in technology or
business processes to conduct backup and recovery, logging and auditing,
system measurement, workload balancing or performance monitoring.
System security also remains unchanged.

MQSeries allows Notes to participate in transaction systems by allowing
Notes to initiate transactions and by acting as a store-and-forward data
repository for data from transaction systems. The enterprise critical data
and the associated business rules continue to be managed by the transaction
system. This allows Notes applications to take advantage of both the data
storage and processing logic of very large, distributed transaction systems.

510 Lotus Notes Release 4.5: A Developer’s Handbook

The following figure shows the integration of Lotus Notes to the host
environment. The Notes user can be on a LAN-attached workstation or on a
disconnected laptop which stores transactions and periodically attaches to
the server to “send” the transactions through MQSeries Link to the host.

Transactional Overview
When a Notes application accesses MQSeries Link, the following function
flow occurs across the platforms which is transparent to the user.

Chapter 19: Accessing Transaction Systems Using MQSeries 511

Applications for MQLink
Any data or proprietary processing logic accessible by a transaction
program can be accessed by Notes using MQSeries. The MQSeries API,
called the Messaging Queue Interface(MQI), gives Notes access to any logic
or storage available on the target system, including non-relational DBMS
file stores like ISAM and sequential files.

The MQSeries link also enables Lotus Notes clients and servers to work
with multiple systems simultaneously, such as accessing a transaction
running on HP-UX Tuxedo and a program running on DEC VAX
concurrently. MQSeries link provides store-and-forward message queues
for Notes application developers to utilize in Notes applications, which
eliminates the necessity for developers to code network-specific
application calls.

Technical Advantages
The MQSeries link for Lotus Notes functions as a special link from Notes to
transaction systems. It has the following advantages over other middleware
products:

Integration with the Notes application development environment.

All the definition, design and testing take place in the Notes
development environment. One of the implementations of MQSeries
link for Lotus Notes is as a LotusScript Extension (LSX). LotusScript
extensions expose their functionality and classes to LotusScript in
exactly the same way as Notes itself does. Notes developers therefore
have seamless access to Notes and MQSeries functionality.

Application location transparency for developers.

The MQSeries link shields the Notes application developer from the
multi-vendor, multi-protocol complexity of today’s business networks
and provides application-location transparency. The MQSeries link
provides a programming interface for computers and networks from
multiple vendors and offers a simple, reliable means of building
distributed and client/server applications.

Integration into Notes application interface.

Notes applications can transparently integrate transaction system data.
LotusScript allows the data returned from host transactions to be
posted directly to the Notes user interface.

Time-independent (asynchronous) processing.

MQSeries allows time independent (asynchronous) processing, which
means that when a message is created to initiate a transaction, that
message does not have to be delivered immediately (if, for example, the

512 Lotus Notes Release 4.5: A Developer’s Handbook

system the transaction runs on is not available at the time the message
is created). MQSeries will assure that the message is kept until the
transaction can process it. Using MQSeries and the agent capabilities of
the Notes server, it is possible to develop incredibly sophisticated
applications, such as future point-in-time workflow applications for
scheduling production runs for customer orders received in Notes.

Communication through queues.

All communication using MQSeries occurs through queues only. The
MQSeries link couples queued, store-and-forward messaging with
Notes’ powerful integrated client/server messaging to deliver a unique
set of application development capabilities unmatched any other
product set.

Data Integrity Protection.

MQSeries allows access to enterprise processes, whereas the other
techniques allow access to enterprise data. Using MQSeries, the only
way to access data is through a transaction, never directly. This may be
considered limiting in that programs must be used to access data. Yet, it
is enabling in that using programs to access data maintains data
integrity, whereas accessing the raw data directly from external
applications could put that data integrity at risk.

Terminology
This section covers some important terms to understand when dealing with
transaction systems.

Message
A message is a string of bytes that has meaning to the applications that use
the message. In MQSeries, messages have two parts, a message descriptor
and application data. The content and structure of the application data are
defined by the application programs that use them. The message descriptor
identifies the message and contains other control information or attributes,
such as the date and time the message was created, the type of message,
and the priority assigned to the message by the sending application. The
message descriptor and application data are shown as separate parts.
Information that is specific to the application, such as <Account name> in
this example, is in the application data part of the message.

Chapter 19: Accessing Transaction Systems Using MQSeries 513

Queue
In physical terms, a queue is a type of list that is used to store messages
until they are retrieved by an application. Local queues exist independently
of the applications that use them. Each queue belongs to a queue manager,
which is responsible for maintaining it. The queue manager puts the
messages it receives onto the appropriate queue.

In MQSeries, messages can be retrieved from a queue by suitably
authorized applications according to these retrieval algorithms:

First-in-first-out (FIFO)

Message priority, as defined in the message descriptor. Messages
having the same priority are retrieved on a FIFO basis

A program request for a specific message.

Queue managers
A queue manager is that part of an MQSeries product that provides the
messaging and queuing services to application programs, through the
Message Queue Interface (MQI) program calls.

Transaction Oriented Systems
Transaction oriented systems are reliant on services from a transaction
processing monitor. These services provide rollback, backup, recovery,
logging and auditing.

The following figure shows a typical transaction oriented system
environment where a terminal is used to enter transactions to a host-based
CICS application for example:

514 Lotus Notes Release 4.5: A Developer’s Handbook

MQSeries Link and Link Extra for Lotus Notes and
CICS Link and Link Extra for Lotus Notes

Overview
MQSeries link and link extra, and CICS link and link extra are tasks that
enable the exchange of data between Notes and a set of APIs (MQI in the
case of MQSeries and ECI for CICS). This link technology also controls the
flow of data between the Notes application and the transaction system. The
actual translation, connecting, delivery and reply from the target system are
all under the control of the link technology. Notice that a single user request
from a Notes client or a Web Browser can generate multiple requests to one
or many target systems, allowing work to be processed in parallel.

CICS link and CICS link extra for Lotus Notes connect directly to CICS,
which runs natively on AIX, OS/2, OS/400, MVS/ESA, VSE/ESA,
Windows NT, HP, and DEC. A host-based system with CICS requires no
additional host software to integrate with Notes. To access a CICS
application using the MQSeries link or MQLSX, you need MQSeries on the
target system in addition to CICS. MQSeries is not required for use with the
CICS link or the CICS link extra.

MQSeries provides messaging and queuing support, routing the message to
the appropriate target system in the network so that it can either be
accessed by programs (for example: a Lotus Notes server) servicing these
queues; or alternatively, the arrival of the message can trigger an
application process or transaction. It supports application to application
connectivity through queues in an asynchronous, loosely coupled model, as
opposed to dependency on customized, tightly-coupled connections
between platforms and application programs.

A Notes application consists of a variety of objects, one of which is the
Notes form, which in turn contains several types of fields. Some of these
fields are populated with data obtained from a transaction processing
system or other non-Notes systems. MQSeries link and link extra for Lotus
Notes (or CICS link or link extra for Lotus Notes) provide an extension to a
field definition describing how the data can be obtained or updated.

MQSeries and CICS link run as server add-in tasks, while the MQSeries and
CICS link extra run as independent processes.

Chapter 19: Accessing Transaction Systems Using MQSeries 515

MQSeries and CICS Link for Lotus Notes

The MQSeries or CICS link provides the following services to an
application developer and the system in operation:

It manages the fields it receives from the Notes application.

It handles all security for access to the transaction systems as well as
security as the result of those transactions

It handles all error conditions that result from the interaction with the
transaction system.

It switches the Notes data to a transaction system or switches the
transaction back to Notes.

It handles all interaction with the transaction system.

It notifies the Notes application as to completion of its task

It controls the update to any Notes database.

Application Development
The development of the actual application is not much different from any
other Notes development effort. All the definition, design and testing take
place in the Notes development environment.

To access transaction systems or non-Notes system data, the Notes
developer needs to know the key fields that are used in the host system to
access the data and what fields they wish to have accessed. The linkage
technology provides a programming interface for computers and networks
from multiple vendors and offers a simple, reliable means of building
distributed and client/server applications. The link shields the Notes
application builder from the multi-vendor, multi-protocol complexity of
today’s business networks and provides application-location transparency.

For example, a Notes application is being developed to handle customer
service. The basic demographic information (customer name, address,
phone number, and so forth.) for that customer is stored in a transaction
system and is keyed by their customer number. The Notes application
developer would define fields for the customer name, address, and so forth.
During the definition process the developer mail-enables those fields or the
form itself to either CICS link or MQSeries link. This means that the fields
will be sent to the link when the form is saved or updated.

Where the application development process does differ from traditional
Notes application development is in transaction mapping. In the transaction
mapping definition, the developer creates a control record in the MQSeries
link Application Transaction Map (MATM) database. This definition stage

516 Lotus Notes Release 4.5: A Developer’s Handbook

is somewhat similar to the establishment of a connection record within
Notes. To define the transaction mapping, the developer needs to define
some processing definitions:

This “connection” record defines:

The actual transaction system, for example CICS™, IMS or non-Notes
system (for example, OS/400®, DEC™ VAX™ VMS™).

What Notes fields map to what fields on the defined system.

Proper security.

What actions are permitted on the data (adds, deletes, updates).

How the results are processed.

Any other fields needed for processing.

The actual link and switching process is managed by controlling the MATM
database. This is a Notes database using standard Notes conventions. It
controls the link that is a Notes server add-in task, so its management is
most appropriately performed by the Notes Administrator.

Transaction Flow
A typical transaction in an application integrated with MQSeries and CICS
link works like this:

1. The Lotus Notes @MailSend function is used to send key information
along with fields to a Notes mail-in database managed by MQSeries
link.

2. MQSeries link extracts the key along with the requested fields and
maps these to an MQSeries request.

3. MQSeries link then plugs in the security, transaction information (keys,
fields, and so forth.)

4. The request is then issued to MQSeries.

5. MQSeries then sends the request to the appropriate system using its
routing technology.

6. When the transaction is complete, the requested data is placed in an
MQSeries message and sent back to MQSeries link.

7. MQSeries link searches for returned responses in addition to processing
outgoing tasks. The incoming data and return codes are processed by
MQSeries link and then either posted to a holding database or switched
back into the original application database

8. The user is then notified that the information has been returned.

Chapter 19: Accessing Transaction Systems Using MQSeries 517

The following diagram shows the different components and the flow of a
transaction. The possibility of having an application which is served over
the Web through Notes Domino technology is also depicted.

MQSeries Link Setup
Setup of the MQSeries link is done through the following procedure:

1. MQSeries

Install the MQSeries product for the operating system being used. The
appropriate system queues also need to be designed and setup.

2. Setup the connectivity between the MQSeries on the Notes Server and
the transaction system.

3. Add the MQLINK add-in task to the Notes server initialization file and
restart the server.

4. Create the Mail-in database and add to the server address book.

5. Copy the MQSeries Link Notes databases (.nsf) from the MQSeries
directory to the Notes Data directory.

MQLINK.NSF — used to map data to and from Lotus Notes

AMQSAMPL.NSF — sample application using @MailSend

518 Lotus Notes Release 4.5: A Developer’s Handbook

6. Setup the mapping between documents and messages in the Link
database using the External Call Parameters Form:

Enter the Name of the External Call Parameters entry and the Mail-in
database name and form:

7. Enter the Request and Reply offsets for the mapping of the data.
Request offsets is the layout of the @MailSend() message arriving on the
Mail-In database. The field names are not used, but the order of the
field definitions is significant. Reply Offsets define the layout of data
returned in the MQSeries message to the reply queue read by MQLINK.

8. Enter the Message Queuing Parameters and error handling entries. The
Message Queuing Parameters are:

Request Queue Name is the Outgoing message queue; that on which
MQLINK will place the message for the MQSeries application.

Reply Queue Name is the incoming message queue for data from the
MQSeries application to MQLINK. MQLINK will read this to update
the Lotus Notes document.

Chapter 19: Accessing Transaction Systems Using MQSeries 519

Message Format Field is the data type of the MQSeries message.

9. Set up your application to create mail entries to your Mail_In database
as specified below. A button can be placed on a form of your
application to send data to MQSeries as in the sample application:

520 Lotus Notes Release 4.5: A Developer’s Handbook

The code in the Send button is used to forward the message to
MQSeries through the Mail_In database for processing:

MQSeries and CICS Link Extra for Lotus Notes

As described above, MQSeries and CICS link allow Lotus Notes users to
initiate the interaction with an MQSeries-connected or CICS application.

However, since transaction systems are typically event-driven and an event
will be triggered by some outside occurrence, it may be required that the
host initiate notification of an external event or some changed data to one or
more Notes applications. Take, as an example, a client submitting a change
of address, or a supplier issuing a price change.

With the new functionality provided in MQSeries and CICS link Extra, the
host transaction system is able to initiate an unsolicited transfer of
transaction data to the Notes server. This data may then be used to update
or add one or more documents to a Lotus Notes database (document
updates may also span multiple databases).

MQSeries or CICS Link Extra provide the following services:

All interaction with the transaction system.

Handling of any error conditions that result from the interaction with
the transaction system.

Control of update(s) to the Notes database(s).

Chapter 19: Accessing Transaction Systems Using MQSeries 521

Searching for matching documents based on the key or keys defined in
the MATM database.

Managing and mapping the fields it receives from the host application.

Application Development
The development of the actual application differs from that described for
MQSeries link and CICS link, above, in that more of the design and
development effort are related to the host application system. The Notes
development effort is limited to the definition and system testing of the
application solution.

In order to update Notes application documents with transaction or
non-Notes system data, the Notes developer needs to know the key fields
that are used in the host system, and what documents/fields will be
updated under what rules.

Using the customer service example from MQSeries/CICS link, above, the
host application system might initiate an update to the Notes application.
The basic demographic information (name, address, phone number, and so
forth). for that customer is stored in a transaction system and is keyed by
that customer number. The Notes application developer would identify the
key field as Customer Number, and the rule for updating the document.
For example, a rule might be — “If Found, Update.” This would cause the
link Extra Task to update the customer document with the data received
from the host application when the Customer Number received is the same
as that in the document.

Managing the Link Extra Process
The MQSeries link extra for Lotus Notes Link-database definition is an
extension of the MQSeries link for Lotus Notes Link-database. As a result
the MQSeries link extra for Lotus Notes Link-database may be used to
define entries for both MQSeries link and MQSeries link extra.

In addition to those fields used by MQSeries or CICS link, the link extra
component includes definitions for:

The primary rule used to define how the data is processed given
existing documents in the Lotus Notes database

An optional Additional Selection Formula used to specify search
criteria to be used against the Notes database

An exit is also provided for special error handling, which the user can tailor
to meet the specific needs of their applications, if required.

522 Lotus Notes Release 4.5: A Developer’s Handbook

A Typical Host-Initiated Transaction
As in MQSeries link or CICS link, the Notes Administrator has set up the
proper security, transaction identification and mapping to the target system
during the implementation phase. In addition, he or she has identified the
key field(s) and processing rule(s) that will control the update process. The
host application system generates message data for the Notes server
containing information to be updated within one or more Notes documents.
This data will include key elements identifying documents to be updated.
The data is placed in an MQSeries message or CICS commarea and then
sent to the appropriate system using MQSeries or CICS. The arriving data
then triggers the link extra task, MQLINKX. The incoming data and return
codes are processed by the task, which extracts the key, as defined in the
MATM, and searches the Notes application database for any and all
matching documents. The task will then take the appropriate action, for
example, update or insert a document, based on the rules defined in the
MATM for that application.

The heart of the Link Extra product is the MATM notes database just as in
the MQSeries and CICS link, above. It provides mapping between the
transaction system application and fields defined in the Lotus Notes
application databases.

AAAAAAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAAAAAAAAA

Web Browser

(via Domino)

AAAAAAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

Notes Client Notes Server

Host

Transaction

System

Transfer

Domino

MQSeries

or CICS

link

Server

Task

View

Document(s)

MQSeries

or

CICS

DB/2, VSAM, IMS,

Oracle, Sybase, etc.

Host

MATM

DB

APPL.
DB

HOST
DB(S)

Chapter 19: Accessing Transaction Systems Using MQSeries 523

The MQSeries Link LotusScript Extension (MQLSX)

The MQSeries link LotusScript Extension enables a Notes application to
interact with non-Notes applications throughout the enterprise via
MQSeries. It provides direct integration between Lotus Notes and
MQSeries software, extending the scope of Notes to include data and
transactions that are part of other environments, and it gives the Notes
LotusScript application the ability to initiate an application transaction to
process or request information from any of the enterprise systems that can
be accessed through MQSeries.

It differs significantly from the Link and Link Extra components described
above. Whereas they are implemented by providing definitions in turn used
by agents or independent tasks, the MQLSX is an Application Programming
Interface that is called from LotusScript to interact directly with MQSeries
through its MQI (Message Queuing Interface).

Another significant difference is that the MQLSX can be implemented on
either the Notes server or the Notes client, enabling the LotusScript
application to access the Message Queue Interface (MQI), and subsequently
the MQSeries infrastructure, directly, when such a design is required by the
business application: for instance to allow control at the Notes client for an
application that requires steps to be completed sequentially rather than in
parallel.

It requires an MQSeries environment and a corresponding MQSeries
application with which to communicate.

AAAA
AAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA

Web Browser

AAAAAAAA
AAAA

AA
AA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAAAAAAAAA

Notes Client

Notes Server

DB/2, VSAM, IMS,

Oracle, Sybase, etc.

Host

APPL.

DB

Request
Reply

HOST

DB(S)

Notes

LotusScript

M

Q

S

E

R

I

E

S

Request

Reply

Host

Application

System

M

Q

S

E

R

I

E

S

Notes

LotusScript

M

Q

S

E

R

I

E

S

Domino

524 Lotus Notes Release 4.5: A Developer’s Handbook

The MQLSX does not make any calls to Notes. The applications handle
what is updated in Notes, splitting the messages received from MQSeries
into fields, and adding them to new or existing Notes documents.

The MQLSX can only be used with Notes Release 4. To run the MQLSX in a
Notes Server environment you need at least one of the following installed
on your server:

MQSeries for OS/2 Version 2.0.1 or later

MQSeries for Windows NT Version 2.0 or later

Note MQLSX implementations on Windows 95 and various UNIX
platforms will soon be available.

To run the MQLSX in a Notes Client environment, you need at least one of
the following installed on your workstation:

MQSeries Client on OS/2

MQSeries Client on Windows 3.1

MQSeries Client on Windows NT

Note The MQSeries Client requires access to at least one MQSeries Server.

Setting Up Your MQLSX Environment
Before you run a script using the MQLSX, check that you can run the queue
manager that your script will connect to, and that the necessary queues are
in place. You can do this by using the command DISPLAY QMGR; this
command fails if the queue manager is not running.

On Windows NT and OS/2 the MQLSX dynamically detects and uses
either the MQSeries server DLL (mqm.dll) or the MQSeries client DLL
(mqic.dll). The MQLSX searches for and uses these in the order mqm.dll,
then mqic.dll. The search uses standard system services to check for the
DLL in your current working directory before searching your normal DLL
search path.

Note This is in the process of being changed.

Tip If you are in doubt about which .DLL the MQLSX is using, you can
run the MQLSX with Trace on and look for the entry under EstablishEPS.

MQLSX Classes
The LotusScript/MQI interface is supplied as a LotusScript Extension
Module (LSX) that provides the following classes:

MQGetMessageOptions

This class encapsulates the various options that control the action of
getting a message from an MQSeries Queue.

Chapter 19: Accessing Transaction Systems Using MQSeries 525

MQMessage

This class represents an MQSeries message. It includes properties to
encapsulate the MQSeries message descriptor (MQMD), and provides a
buffer to hold the application-defined message data.

The class includes methods (Write methods) to copy data from a
LotusScript application to an MQMessage object and similarly methods
(Read methods) to copy data from an MQMessage object to a
LotusScript application. The class manages the allocation and
deallocation of memory for the buffer automatically. The application
does not have to declare the size of the buffer when an MQMessage
object is created as the buffer grows to accommodate data written to it.

MQPRocess

This represents an MQSeries process definition object (used with
triggering). Using the MQLSX, you can interrogate the properties of the
process definition object within your script.

MPutMessageOptions

This class encapsulates the various options that control the action of
putting a message onto an MQSeries Queue.

MQQueue

This represents a connection to an MQSeries Queue. This connection is
provided by an associated MQQueueManager object. When an object of
this class is destroyed, it is automatically closed.

MQQueueManager

This represents a connection to a queue manager. The queue manager
may be running locally (an MQSeries server) or remotely with access
provided by the MQSeries client. An application must create an object
of this class and connect it to a queue manager. When an object of this
class is destroyed, it is automatically disconnected from its queue
manager.

MQSession

This is the root class for the MQSeries link LotusScript Extension. There
is always one and only one MQSession object per LotusScript instance.
An attempt to create a second object will create a second reference to
the original object.

Using the MQLSX
When designing a LotusScript application that uses the MQLSX, the most
important item of information is the actual message that will be sent or
received from the remote MQSeries system. Therefore you must know the
format of the items that will be inserted into the message.

526 Lotus Notes Release 4.5: A Developer’s Handbook

You should also know:

The codepage that the remote system runs in

The encoding that the remote system requires

To help you to keep your code portable it is good practice always to set the
codepage and encoding even if these are currently the same in both the
sending and receiving systems.

Notes Server or Notes Client
When considering how to structure the implementation of the system you
design, remember that your MQLSX scripts must run on the same machine
that you have MQSeries installed on. If you do not have MQSeries installed
locally, make use of the remote agent function available within Notes. You
will need to do this explicitly, as Notes by default will run a script locally.

When your MQLSX script runs, it will need an MQSeries application that
picks up the message your script has sent or one that puts a message on a
queue for your script to get. For this to work, both your script and the
MQSeries application need to know the structure of the message they are
dealing with.

Using Large Messages
The MQLSX supports messages up to 4MB long if memory is available.
However, when using large messages Notes restricts:

Plain text to 64K.

Fields added to the summary buffer to 32K.

LotusScript string length to 32000 characters.

Tip To overcome this limitation consider appending strings into a rich
text field in Notes, which has no size restrictions. The MQLSX has been
designed to take advantage of this feature. Copy the data 32,000 characters
at a time from an MQLSX message into LotusScript strings. From the
LotusScript strings, append the data into a rich text field. For example,
where the message data is greater than 32K (the maximum length of a
string in LotusScript), read the data in multiple parts.

This code fragment assumes that the message, MyMsg, has already been
taken from the queue using the GET method of the MQQueue class and is
less than 64K in length:

Dim MessagePartA As String
Dim MessagepartB As String
...
...
MessagePartA = MyMsg.ReadString(32000)
MessagePartB = MyMsg.ReadString(MyMsg.DataLength)

Chapter 19: Accessing Transaction Systems Using MQSeries 527

Embedded Nulls in a String
The MQSeries constants, used for the initialization of three MQMessage
properties below are not supported by the MQLSX. The LotusScript String
call allows you to do the same thing.

MQMI_NONE (24 NULL characters)
MQCI_NONE (24 NULL characters)
MQACT_NONE (32 NULL characters)

To set the MessageId of an MQMessage to MQMI_NONE:

mymessage.MessageId = String(24,0)

To set the CorrelationId of an MQMessage to MQCI_NONE:

mymessage.CorrelationId = String(24,0)

To set the AccountingToken property of an MQMessage to
MQACT_NONE:

mymessage.AccountingToken = String(32,0)

Message Descriptor properties
Where an MQSeries application is the originator of a message and
MQSeries generates the AccountingToken, CorrelationId, MessageId — you
are recommended to use the AccountingTokenHex, CorrelationIdHex, and
MessageIdHex properties if you want to look at their values, or manipulate
them in any way — including passing them back in a message to MQSeries.
The reason for this is that MQSeries-generated values are strings of bytes
that have any value from zero through to 255 inclusive. They are not strings
of printable characters.

Where your MQLSX script is the originator of a message and you generate
the AccountingToken, CorrelationId, MessageId, you are recommended to
use the AccountingToken, CorrelationId, and MessageId properties.

Receiving a Message from MQSeries
There are several ways of receiving a message from MQSeries:

Polling by issuing a GET followed by a wait, using the LotusScript
TIMER function

Issuing a GET with the Wait option; you specify the wait duration by
setting the WaitInterval property. This is recommended when, even
though you set your system up to run in multi-threaded environment,
the software running at the time may only run single threaded. This
avoids your system locking up indefinitely.

Caution Issuing a GET with the Wait option and setting the
WaitInterval to MQWI_UNLIMITED will cause your system to lock up
until the GET call completes if the process is single threaded.

528 Lotus Notes Release 4.5: A Developer’s Handbook

Issuing a GET without the Wait option. In this case, once your script
has issued the call, control is passed to the next script waiting to run.
This second script, and any other scripts that may run before the
original script regains control, must not affect any of the objects that the
original script will expect to be the same as at the time it lost control.

When Your MQLSX Script Fails
Independently of the trace facility, for unexpected and internal errors, a
First Failure Symptom report is produced.

You can find this report in a file named GMQnnnnn.fdc, where nnnnn is the
number of the Notes process that is running at the time. You can find this
file in the working directory from which you started Notes or the name of
the path specified in the GMQ_PATH environment variable.

Example: MQSeries Link for Lotus Notes Extension
The MQSeries link for Lotus Notes supports initiation of a transaction from
a LotusScript program. MQSeries provides a platform-independent
application programming interface called the Messaging Queue Interface
(MQI) available directly in LotusScript, allowing developers to create very
advanced Notes applications that leverage transaction systems.

Using LotusScript, developers initiate a transaction either directly from the
user interface (UI) or from a Notes agent on the Notes client and/or server.
Through the MQSeries LSX, LotusScript can initiate a transaction plus allow
the data returned from the host transaction to be posted directly to the
Notes UI. If the end-user is viewing an in-memory version of the document,
they must refresh their view to see the data returned from the transaction.

With the MQSeries LSX and the power of LotusScript, the Notes
programmer can choose to return the transaction data to the UI, to the
document, or to both. The script below establishes a connection to a
transaction system that performs credit rating checks from within a Notes
order-processing application. When a “Check Name Button” is clicked on a
Notes form, the script will connect to MQ, open a queue, and put the
Customer name on the queue. Then, the script will get the return message
from the reply queue to determine the Customer’s credit rating.

'** Object Variables
Public uidoc As NotesUIDocument
Public workspace As NotesUIWorkspace
Public doc As NotesDocument
Sub Click(Source As Button)
'** Load the MQSeries LotusScript extension

UseLSX “MQLSX”
Dim Mqqms As New MQSession
Dim Mqqmgr As MQQueueManager

Chapter 19: Accessing Transaction Systems Using MQSeries 529

Dim MqqCheck As MQQueue
Dim MqqReply As MQQueue
Dim Mqpmo As New MQPutMessageOptions
Dim Mqgmo As New MQGetMessageOptions
Dim MQMsgSend As New MQMessage
Dim MQMsgRec As New MQMessage
Dim Msgdata As NotesItem

'** String to contain the MQMessage data
Dim OutString As String

'**Connect to the MQSeries default QueueManager
Set MQqmgr = MQqms.AccessQueueManager("")

'**Setup CREDITCHECK as the output queue
Set MQqCheck = _
MQQmgr.AccessQueue("CREDITCHECK",0,"","","")

'**Setup REPLY as the input queue
Set MQqReply = _
MQQmgr.AccessQueue("REPLY",0,"","","")

'**Extract the name from the form and write it as
'**a string into the message object.
Set Msgdata = doc.GetFirstItem("CustomerName") _
MQMsgSend.writestring (Msgdata.Text)

'**Define the name of the queue to extract
'**messages from,
MQMsgSend.ReplyToQueueName = "REPLY"

'**Put the message on the output queue
MQqCheck.Put MQMsgSend, MQpmo

'**Get first message from the Reply queue
MQqReply.Get MQMsgRec, MQgmo

'**Read the message in full, as a string, and
'**update form
OutString = _
MQMsgRec.ReadString(MQMsgRec.MessageLength)
Call doc.ReplaceItemValue ("CreditStatus", _
OutString)

End Sub

530 Lotus Notes Release 4.5: A Developer’s Handbook

Chapter 20
Accessing Notes With the Notes C++ API

Lotus Notes contains an open interface to enable you to access Notes objects
from external applications. In this chapter, we will describe the Notes C++
API, an easy-to-use class library. You will learn how to use it in C++
programs to access Notes facilities.

Any information in this chapter relates to the C++ API Beta 1 Release which
was the current version at the time of this writing.

Overview

The Notes C++ API is a C++ library consisting of a set of classes that enable
you to write application programs to create, access, and manage Notes
Release 4 databases. It provides you with an object-oriented interface to
Lotus Notes built on the Notes C API, and provides easier, more consistent
access to Notes functionality than the C API.

You can use the Notes C++ API to create a variety of applications. You can
write application programs that

Retrieve data from Notes databases.

Your application programs get access to yet another data source, just
like they may have access to file systems or RDBMS, for example.

Transfer information between Notes and non-Notes databases.

For example, a program can exchange data between Notes and an
object-oriented database or vice versa.

Create Notes databases that are a combination of existing databases.

You can collect and analyze data from multiple databases, and store the
results in a higher-level strategic information database.

Perform periodic maintenance of Notes databases.

For example, a program can scan a Notes mail database and delete
every message more than six months old.

531

Types of Applications
Programs written using the Notes C++ API may take a variety of formats.
You can package C++ API code into stand-alone applications, dynamic
libraries, and Notes server add-in tasks.

In all these program formats, the core API code is essentially the same. You
use the same C++ API functions to operate on Notes databases. Only some
additional API calls have to be added to control server add-ins.

Stand-alone Applications and Dynamic Libraries
Stand-alone API applications are main programs that make API calls into
the Notes software. So, you must have Notes installed on the machine
where these programs run, but you do not need to run Notes workstation
software before running API programs.

Dynamic libraries are triggered by calls to their exported functions, and can
call any API function.

Notes Server Add-In Tasks
The Notes server software is composed of standard tasks that carry out the
server functions. The C++ API lets you extend the Notes software with
server add-ins. A Notes server add-in is a custom server task that runs
alongside the standard Notes server tasks.

Contents of the Notes C++ API Distribution
At the time of this writing, the Lotus Notes C++ API was available for OS/2
Warp, Windows 3.X, Windows 95, Windows NT, and AIX 4.1.

For each of those platforms, the Lotus Notes C++ API contains

Documentation.

Two Notes databases contain the API User Guide and Reference Guide.
The latter contains detailed descriptions of all API classes, member
functions as well as global functions, macros, enumerations, and
constants.

Sample programs.

The distribution contains source code to a variety of sample programs.
It also provides makefiles for the supported software platforms, and
some sample Notes databases to demonstrate the capabilities of the
programs.

532 Lotus Notes Release 4.5: A Developer’s Handbook

Development files.

These files comprise internal header files that are included in Notes
C++ API source modules, library files that you link to your Notes C++
API programs, and Notes C++ include files.

API programs written for different platforms share the same header
files, whereas library files are platform-specific.

Note The only include file you need for your programs is LNCPPAPI.H.

The Notes C++ API Architecture
This section presents you with an overview of the C++ API classes and
data types.

Built-In Data Types
In order to enhance the portability of C++ API programs, the C++ API
includes several macros for basic data types. You are encouraged to use
them rather than the native C++ data types.

LNBOOL

Variables of this type take one of the constant values: FALSE (equals 0),
or TRUE (different from 0).

LNINT

A 32-bit signed integer type.

LNSINT

A 32-bit unsigned integer type.

LNNUMBER

A 64-bit IEEE real number type.

LNSTATUS

A 32-bit error status type returned by C++ API functions. The constant
value LNNOERROR (equals 0) stands for success; a non-zero value
indicates an error or warning condition.

Note The API establishes certain naming conventions, because some
compilers haven’t yet implemented the C++ namespace constructs. The
names of classes, global functions, and macros are prefixed with “LN”, and
they are in propercase, where each word begins with an uppercase
character. Enumerations and data types also begin with the “LN” prefix,
but contain only uppercase characters.

Chapter 20: Accessing Notes With the Notes C++ API 533

Common Classes
The C++ API library includes certain classes for dealing with data types
such as numbers, date and time information, strings, and arrays of strings.
You can use the classes as-is to handle those types; later on you will notice
that they are exactly the classes that represent the item values stored in
Notes documents.

For a description of the class member functions, refer to the API Reference
Guide.

The LNNumber Class
The LNNumber class represents an LNNUMBER and provides member
functions to convert strings into numbers and vice versa.

The LNNumbers Class
This class represents an array of LNNumber objects. It provides you with
member functions to copy such arrays, and to insert, append, update and
delete members.

The LNString Class
The LNString class facilitates the string handling in your API programs. It
represents a null-terminated LMBCS string you can manipulate in many
different ways. For example, it contains member functions for character,
substring, and word handling as well as operators to compare strings and
to extract characters.

The LNText Class
This class represents an array of LNString objects. It provides you with the
same functionality for array handling as the class LNNumbers does.

The LNDatetime Class
Date and time information is represented by this class. The LNDatetime
class contains comparison operators and member functions to retrieve and
set the individual date and time components.

C++ Class Hierarchy
The Notes C++ API consists of a set of classes, each of which gives you
access to a specific type of Notes objects. The design of these classes reflects
the Notes object properties and relationships between objects as they can be
viewed from a conceptual point of view. For example, Notes databases
have a server property, and contain agents and documents. Again,
documents have a form property, and possibly responses, and in turn
consist of a set of items.

534 Lotus Notes Release 4.5: A Developer’s Handbook

This leads naturally to a hierarchy of containment relations between the API
classes. Likewise, there is also an inheritance hierarchy. For example,
consider items which store a list of values. The name and value type
properties are common to all items, but the actual list of values is specific
for each value type.

The Containment Hierarchy

The top-level class is LNNotesSession. At the beginning of any C++ API
program, you create an LNNotesSession object in whose context you create,
delete, and access one ore more Notes databases. LNDatabase objects
contain an ACL and an array of LNNote objects.

A database object contains exactly one object of class LNACL. This class in
turn contains a set (implemented as array) of applicable roles, and a set of
ACL entries. The latter defines the access level for persons, servers, and
groups of persons or servers.

On the other hand, a database object contains a set of notes. A note is the
general term for all objects contained in a database. Thus, a note can
represent different types of objects, such as agents or documents. Common
to all notes is that they in turn contain a set of items. More specific
operations on a note require explicit knowledge of its type; so they are
defined using inheritance. For example, a document can have responses
whereas an agent can not.

So, this hierarchy defines how to navigate through the Notes object space.
However, for some operations it is more convenient to use fast links to
sub-objects. For example, consider how to access a particular item of a
document. This is achieved by additional references as indicated in the
figure above.

LNACL

LNNotes
Session

LNDatabase

LNNoteArray

LNNote

LNItemArrayLNACLEntry

LNACLEntry
Array

LNACLRole
Array

LNItem

contains
contains many
linked with

Chapter 20: Accessing Notes With the Notes C++ API 535

The Inheritance Hierarchies
The classes for the actual Notes database objects are derived from the class
LNNote. This base class provides common member functions to work with
the items contained in a note; the derived classes LNAgent, LNDocument,
and LNViewFolder represent the Notes objects. Indeed, it is unlikely that
you ever create an object of the class LNNote, because it is not related to
any existing Notes object.

As depicted in the containment hierarchy, objects of the class LNNote are
contained in LNNoteArray objects. But notes are always either agents,
documents, views, or folders, and therefore an LNDatabase object will
never return a set of LNNote objects but rather a set of agents, documents,
and so on.

So, the classes LNAgentArray, LNDocumentArray, and
LNViewFolderArray are derived from LNNoteArray. They use the
functionality of the base class to provide type-safe access to the contained
agents, documents, folders, and views. This means for example that
member access functions of the class LNDocumentArray return an
LNDocument object instead of an LNNote object.

The same considerations apply to items stored in a note. All items share
some common properties and functionality, and there are objects capable of
maintaining a set of items, namely of class LNItemArray. The following
figure shows the item classes actually contained in documents.

Note The common classes are derived from the class LNItem.
Furthermore, there is a class LNRichtext that is able to represent
rich text items.

LNNote
inherits from

LNAgent LNDocumentLNViewFolder

LNNote
Array

inherits from

LNAgent
Array

LNDocument
Array

LNViewFolder
Array

LNItem
inherits from

LNText LNNumbers LNRichTextLNDateTime

536 Lotus Notes Release 4.5: A Developer’s Handbook

Error Handling
Most of the API class member functions return an LNSTATUS status code
to indicate success or failure. Those that don’t return such a code use the
C++ exception mechanism to indicate a failure, by throwing an LNSTATUS
exception. To handle C++ exceptions, your program uses the try and catch
blocks, as illustrated below.

try
{
 // program statements
}
catch(LNSTATUS error)
{
 //error-handling statements
}

Note You may want to provide at least one pair of try/catch blocks in
your main function, so that if an exception is thrown, your program will be
able to clean up as needed before terminating.

Because most API functions return an LNSTATUS value, your program
would typically test the return value of each function call to detect errors.
This provides your program with a lot of control over error handling, but it
also makes the program more cumbersome to write. In many applications,
you might prefer to handle API errors centrally, in one or more places in
your program, rather than testing the return value of each function.

The C++ API global LNSetThrowAllErrors function allows you to do
this. The statement LNSetThrowAllErrors(TRUE) instructs the API to
throw an LNSTATUS exception whenever an API error occurs anywhere
in your program. This means your program can use C++ try/catch blocks
to handle all API errors, rather than testing return codes for individual
functions. This feature remains in effect until you disable it using
LNSetThrowAllErrors(FALSE). You can use the LNGetThrowAllErrors
function to test whether the feature is enabled or disabled; the default is
disabled.

Note Some functions also return warnings in the LNSTATUS values.
Those are never thrown as exceptions even if the exception mechanism is
enabled.

Retrieving Error Messages
When an error or warning occurs, your program can initiate the
appropriate error recovery, such as simply displaying an error message and
returning.

Chapter 20: Accessing Notes With the Notes C++ API 537

LNSTATUS error codes have associated error messages, so you can retrieve
the appropriate message for a given error. To do so, you call the global
function

LNINT LNGetErrorMessage(LNSTATUS error, char *buf,
 LNINT buflen =
LNERROR_MESSAGE_LENGTH)

You pass the error code in the first argument. The function retrieves the
null-terminated error message in the buffer specified by the second
argument. Optionally, you specify the buffer length in the third argument,
which defaults to LNERROR_MESSAGE_LENGTH (512 bytes). If the
message is longer than the buffer, LNGetErrorMessage truncates the
message.

A Guided Tour Through the API
This section introduces the C++ API classes, and shows how to use them
in application programs. It does not cover all classes or all member
functions of the classes presented. So, if you miss a function you need
for a particular task, refer to the API Reference Guide. It contains a complete
list of them all.

Setting Up an Application Profile
Regardless of whether the C++ API program is a stand-alone program, a
dynamic library, or a server add-in task, it must initiate a Notes session
before using any API functions, and end the Notes session before
terminating.

The C++ API is capable of supporting both single- and multi-threaded
applications. For the latter, please refer to the API User Guide to see how
they are set up.

Creating Single-Threaded Applications
To create a single-threaded application, you initiate a Notes session by
creating an LNNotesSession object and calling the Init member function,
and you end the session by calling the Term member function.

Note For UNIX applications only, the Init function requires the command
line information that was passed to your program’s main function.

538 Lotus Notes Release 4.5: A Developer’s Handbook

The following code demonstrates the basic structure of a single-threaded
C++ API program, but without error checking:

void main(int argc, char *argv[])
{
 LNNotesSession session;// create session object on stack
 session.Init(); // for UNIX: session.Init(argc, argv);
 // ... your code ...
 session.Term();
}

The NotesSession Class
The LNNotesSession class provides an application program with a
connection to Notes. Its member functions can be divided into two groups:
functions to access databases, and some general purpose functions.

Note If you are familiar with the LotusScript Notes class NotesSession,
you will notice the similarities between them.

The following functions are not within the scope of a Notes database:

Retrieving the local Notes data directory.

LNString GetDataDirectory ()

Retrieving the user name from the ID file on the local machine.

LNString GetUserName ()

Environment variable handling.

The two functions

LNString GetEnvironmentString (const LNString &variable)

and

LNSTATUS SetEnvironmentString (const LNString &variable,
 const LNString &string)

allow you to return and set the values of environment variables as
defined in the local NOTES.INI file.

Current date and time.

LNDatetime GetCurrentDatetime ()

The following functions allow you to create, delete and access databases:

Open an existing database.

LNSTATUS GetDatabase (const LNString &path,
 LNDatabase *db,
 const LNString &server = “”)

Chapter 20: Accessing Notes With the Notes C++ API 539

Given the path and the server of the database to be opened, this
function initializes a database object whose address is the second
parameter.

Note Whenever a function returns an object as result of the operation,
it is a pointer type argument to the function. In that case, you have to
pass the address of an existing object of that type that will be initialized
on return.

Create and open a new database copy.

As for many other class member functions, this function exists in
several versions allowing you to use the simplest one that fits your
needs. The version with the most parameters is the following:

LNSTATUS CreateDatabaseCopy (const LNString &srcdb_path,
 const LNString &srcdb_server,
 const LNString &newdb_path,
 const LNString &newdb_server,
 constLNCreateDatabaseOptions
 &options,
 LNDatabase *newdb = 0)

You specify the Notes server and the path of the source database, the
server and the path of the database to be created, and a set of options
for the new database. In the last argument you pass the address of an
LNDatabase object that is initialized on successful return.

Create and open a new database from a template.

Again, the function CreateDatabaseFromTemplate is overloaded. There
is a version that has exactly the same arguments as the function
CreateDatabaseCopy shown above. Here, the first two arguments
describe the server and path of the database template.

Delete a database.

LNSTATUS DeleteDatabase (const LNString &path,
 const LNString &server = “”)

This version of the DeleteDatabase function gets the server and the path
of the database in question.

Access an existing database

LNSTATUS GetDatabase (const LNString &path,
 LNDatabase *db,
 const LNString &server = “”)

This function initializes the database object whose address is passed as
second argument, with the database at the specified location.

540 Lotus Notes Release 4.5: A Developer’s Handbook

Note As you may have noticed, a Notes database is not created by
instantiating a new object of class LNDatabase, and is not deleted by a
corresponding delete operator, but rather by function calls to a session
object. This is due to the general API concept to use these classes as
easy-to-use interfaces to the real Notes objects. As such, an LNDatabase
object is not a database itself; think of it as a handle to a database. The same
applies to all other objects stored in databases.

Example: Creating a New Database
Now, we will use the member functions of the LNNotesSession class to
create a discussion database that will be used throughout the rest of the
chapter. The example also shows how to initiate a session, and to set up an
error handler.

#include <iostream.h>
#include <lncppapi.h>
void main(int argc, char *argv[])
{
 LNNotesSession session; // Create a session
object LNDatabase discussDB; // Create a
database object LNCreateDatabaseOptions options; // Create
an options object
 LNSetThrowAllErrors(TRUE); // Enable the API
exception
 // mechanism
 try
 {
 session.Init();

 // Set options: the new database will inherit design
 // updates
 options.SetInheritDesign (TRUE);

 // Create a database from the discussion template on the
 // local machine. It will be located at the Notes data
 // directory.
 session.CreateDatabaseFromTemplate ("DISCUSS4.NTF",
 "",
 "DISCUSAPI.NSF",
 "",
 options,

&discussDB);

 discussDB.Close(); // close the database
 } // end try
 catch(LNSTATUS error)
 {

Chapter 20: Accessing Notes With the Notes C++ API 541

 char errorBuf[LNERROR_MESSAGE_LENGTH];

 LNGetErrorMessage(error, errorBuf);
 cerr << "Error: " << errorBuf << endl;
 }
}

Working With Databases
The LNDatabase class provides access to all objects contained in a
database: agents, views, folders, and documents. Furthermore, you can
access and modify the database properties, such as the name of the
database, and the ACL.

Opening and Closing a Database
Before you can perform any operations on a database, you must open it.
Creating a database with LNNotesSession::CreateDatabase automatically
opens the database, whereas a call to LNNotesSession::GetDatabase
does not.

Opening a database.

LNSTATUS Open (LNDBOPENFLAGS flags)

The passed optional argument specifies how operations on the database
should be performed. The only flag you can specify is
LNDBOPENFLAGS_DELAY_COMMIT. Setting this flag means that all
updates will take place in cache memory; when you close the database,
its contents on disk are synchronized.

Tip Using this flag will speed up your API operations, but if the
machine crashes, the changes are lost.

Closing a database .

LNSTATUS Close ()

Closing a database also closes any notes it contains.

Note Any unsaved changes you made to any notes in the database will
be lost when you close the database, so be sure to save any changes
first. Also, if you don’t close a database object before it goes out of
scope, it will close automatically.

Accessing Database Properties
Retrieving the Notes server and the path of a database.

LNString GetServer ()
LNString GetFilepath ()

If the database is stored on the local machine, GetServer returns an
empty string.

542 Lotus Notes Release 4.5: A Developer’s Handbook

Accessing the database title.

LNString GetTitle ()
LNSTATUS SetTitle (const LNString &title)

Accessing the design template attributes.

LNString GetTemplateName ()

It returns an empty string if the database is not a template.

LNSTATUS SetTemplateName (const LNString &name)

This function defines a new name for this database template.

LNString GetInheritsFromTemplateName ()
LNSTATUS SetInheritsFromTemplateName (const LNString
&name)

You can use these functions to determine whether the database is based
on a template, and you can assign a new database template to it.

Accessing the database ACL.

LNSTATUS GetACL (LNACL *acl)

This function initializes the ACL object whose address you pass as
argument.

Continuing with our sample database, we will now assign a meaningful
title to it, and define a different default access right.

 LNNotesSession session; // Create a session object
 LNDatabase discussDB; // Create a database object
 LNACL acl;

 LNSetThrowAllErrors(TRUE); // Enable exceptions
 try
 {
 session.Init();

 // Get the database and open it
 session.GetDatabase ("DISCUSAPI.NSF", &discussDB, "");
 discussDB.Open ();

 // Set the title
 discussDB.SetTitle ("Notes C++ API Discussion");

 // Get the ACL
 discussDB.GetACL (&acl);

 // Set the default access to "no access"
 acl.SetDefaultAccessLevel (LNACLLEVEL_NO_ACCESS);

Chapter 20: Accessing Notes With the Notes C++ API 543

 // Save the change
 acl.Save ();

 // Close the database
 discussDB.Close()

 }

Accessing Views and Folders
In order to access database views and folders, an LNDatabase object
provides the following functions:

Accessing a view or folder by name.

LNSTATUS GetViewFolder (const LNString &viewname,
 LNViewFolder *view)

This function initializes the view object whose address is passed as
argument, to the view or folder with the specified name.

Accessing all views and folders.

LNSTATUS GetViewFolders (LNViewFolderArray *views)

Test whether a particular view or folder exists.

LNBOOL ViewFolderExists (const LNString &viewname)

Accessing Documents
The LNDatebase class provides functions to create, delete, and access
documents. Most of them either require an LNDocument object as
parameter, or they return such an object. Again, whenever a function
returns a database object, you pass the address of the object to be
initialized.

Create new documents.

LNSTATUS CreateDocument (LNDocument *newdoc)
LNSTATUS CreateDocument (LNDocument *newdoc,
 const LNString &formname)

The first function creates a new blank document with the default form.
The new document is returned in newDoc.

Create copies of existing documents.

LNSTATUS CreateDocument (LNDocument &document,
 LNDocument *newdoc)

This function takes document and creates a new copy of it that is
returned in newDoc.

Delete documents.

LNSTATUS DeleteDocument (LNDocument *document)

544 Lotus Notes Release 4.5: A Developer’s Handbook

Get all documents in the database.

LNSTATUS GetDocuments (LNDocumentArray *docs)

This function initializes the document array whose address is passed as
argument, with all documents in the database.

Searching for Documents
When you have to search for the documents you want to access, you have
basically two choices. Either you use one of the following search functions
as provided by a database object, or you navigate through a view or folder.

Selective search for documents.

LNSTATUS Search (const LNString &formula,
 LNNoteArray *results)
LNSTATUS Search (const LNString &formula,
 LNNoteArray *results,
 LNSearchOptions *options)

These are general search functions that allow you to search for any
notes in the database, including agents, views, folders, and documents.
The selection criteria are expressed by a formula string that can include
any of the Notes @ functions, field names, and logical operators.

With the search options, you can restrict the search to notes modified
during a given period of time. Moreover, you can specify only to
retrieve a certain note type such as documents, for example.

Full-Text search for documents is also available. Refer to the API User
Guide for details of setting up a full-text index and performing a
full-text search.

In our sample discussion database, we will now delete all documents that
were created by a particular person, for example. Here’s the code:

 LNNotesSession session; // Create a session
object
 LNDatabase discussDB; // Create a database
object
 LNSearchOptions options; // Create a search
options
 // object
 LNDocumentArray resultDocs; // Create a search result
 // container
 LNINT i;

 LNSetThrowAllErrors(TRUE); // Enable exceptions
 try
 {
 session.Init();

Chapter 20: Accessing Notes With the Notes C++ API 545

 // Get the database and open it
 session.GetDatabase ("DISCUSAPI.NSF", &discussDB, "");
 discussDB.Open ();

 // Specify in the options that we are only interested
 // in notes of type documents within the specified
period
 // of time.
 options.SetNoteType (LNNOTETYPE_DOCUMENT);
 options.SetBeginDate ("01/01/1989");
 options.SetEndDate (session.GetCurrentDatetime());

 // The query is: Find all documents whose author
 // is Henry Miller.
 discussDB.Search (
 "@Name([CN]; @Author) = \"Henry Miller\"",
 &resultDocs,
 &options);

 // Delete all found documents (arrays start at index 0)
 for (i = 0; i < resultDocs.GetCount(); i++)
 discussDB.DeleteDocument (&resultDocs[i]);

 // Close the database
 discussDB.Close();
 }

Working With Documents
Once you have got an LNDocument object, you can can retrieve and modify
all its properties and items.

Opening, Saving, and Closing Documents
You get a document of a Notes database either by creating it, or as a result
of a database search. Creating a document implicitly opens it. In all other
cases, you need to open it before you can access its properties and items.
Likewise, after you have performed all changes, you need to call the Save
method before closing the document. Otherwise all changes are lost.

The functions are the following:

Opening a document.

LNSTATUS Open (LNNOTEOPENFLAGS flags=
 LNNOTEOPENFLAGS_DEFAULT)

In the flags, you can specify not to mark the document as read, for
example.

546 Lotus Notes Release 4.5: A Developer’s Handbook

Saving a document.

LNSTATUS Save (LNNOTESAVEFLAGS flags=
 LNNOTESAVEFLAGS_DEFAULT)

In the flags, you can specify options such as delayed writing, or forced
saving.

Closing a document.

LNSTATUS Close ()

Creating, Deleting, and Accessing Items and Their Values
These are the functions to retrieve items of a documents, and to create
new ones.

Creating new items.

LNSTATUS CreateItem (const LNString &name,
 LNItem *newitem,
 LNITEMFLAGS flags = 0,
 LNITEMOPTIONS options =
 LNITEMOPTIONS_DELETE_APPEND)

This function creates the new item with the specified name in the
document. In the flags, you can specify whether the item shall be
signed, encrypted, or protected. With the options argument, you can
influence the operation behavior by specifying what action should take
place when an item with this name already exists: append the item,
delete the existing item first, or treat this case as an error.

LNSTATUS CreateItem (const LNItem &item,
 LNITEMOPTIONS options =
 LNITEMOPTIONS_DELETE_APPEND,
 LNItem *newitem = 0)

LNSTATUS CreateItem (const LNString &name,
 const LNItem &item,
 LNITEMFLAGS flags = 0,
 LNITEMOPTIONS options =
 LNITEMOPTIONS_DELETE_APPEND,
 LNItem *newitem = 0)

These functions copy an existing item into the document. The second
version allows you to specify a name different from the source item.

Deleting items.

LNSTATUS DeleteItem(const LNString &name)
LNSTATUS DeleteItem(LNItem &item)

Chapter 20: Accessing Notes With the Notes C++ API 547

Retrieving existing items.

LNSTATUS GetItem (const LNString &name, LNItem *item)

This function gets the specified item within the note. The input is a
string that contains the name of the item.

LNINT GetItemCount ()

Returns the number of items within the note.

LNSTATUS GetItems (LNItemArray *items,
 LNITEMTYPE type = LNITEMTYPE_ANY)

This function gets all items of a document.

Note Although all these declarations expect LNItem objects as input and
output argument types, you will never pass such an object but rather an
object of a class derived from it, such as a LNText, LNNumbers, or
LNRichtext.

Now, we are ready to automatically create some documents in our
discussion database. You should notice how the common class types such
as LNText are used to work with the actual item values. In this example, we
simply copy all documents of the database, and modify their subjects.

LNNotesSession session; // Create a session object
LNDatabase discussDB; // Create a database object
LNDocumentArray documents; // Create a document container
LNINT i;

LNSetThrowAllErrors(TRUE); // Enable exceptions
try
{
 session.Init();

 // Get the database and open it
 session.GetDatabase ("DISCUSAPI.NSF", &discussDB, "");
 discussDB.Open ();

 // Get all documents of the database
 discussDB.GetDocuments (&documents);

 // For all these documents:
 // first, create copies of them in the database,
 // and then modify their subject item
 for (i = 0; i < documents.GetCount(); i++)
 {
 LNDocument srcDoc = documents[i];
 LNDocument newDoc;
 LNText subjectItem;
 LNString newSubject;

548 Lotus Notes Release 4.5: A Developer’s Handbook

 // Create a new copy of the i-th document
 // in the database
 // *** DO NOT USE THE COPY CONSTRUCTOR! ***
 discussDB.CreateDocument (srcDoc, &newDoc);

 // Get the title item of the new document
 // and change it (the index 0 of the string array!)
 newDoc.GetItem ("Subject", &subjectItem);

 newSubject = "This is a copy of: ";
 newSubject += subjectItem [0];
 subjectItem[0] = newSubject;

 // Save the change
 newDoc.Save ();
 }

 // Close the database
 discussDB.Close();
}

To give you an impression of how the result looks, here’s a screen shot of
the main database view after running the program:

Working With Response Documents
Many databases make use of response documents to create relationships
between documents. For example, in the sample database, you can create
responses to any of the discussed topics. The C++ API provides the
following functions to work with response documents:

Creating a response.

LNSTATUS MakeResponse (const LNDocument &parent)

This function makes the current document a response of the one
specified in the argument.

Chapter 20: Accessing Notes With the Notes C++ API 549

Retrieving responses.

LNINT GetResponseCount ()
LNSTATUS GetResponses (LNDocumentArray *responses)

These functions return the number of response documents, and the
response documents itself, respectively. They include only the
immediate responses of the documents, not the responses to responses.

Retrieving the parent documents.

LNSTATUS GetParentDocument(LNDocument *parent)

This function gets the parent of the document if it is a response
document.

Working With Views and Folders
So far, you know that views and folders are represented by the class
LNViewFolder which is a special kind of a note. For the following
presentation, we need to refine the containment:

Folders and views are both collections of Notes documents. They can be
treated in the same way, because they share the same design properties. So,
your starting point is the class LNViewFolder which represents a view of
folder. The entries (rows) of such objects are represented by LNVFEntry
objects.

Views can contain main documents and response documents, and they can
be organized by categories and sub-categories. Using the C++ API, you can
access all or some entries in a collection. Objects of the class LNViewFolder
provide you with many functions to navigate within the collection.
However, if you want to access the responses (or more general, the
children) or even several levels of descendants of an entry in the collection,
you may want to instruct the LNViewFolder object to create a navigator
object of the class LNVFNavigator. Although you could also use the

LNVFNavigator

LNViewFolder

LNVFEntry

LNVFPosition

contains
contains many
linked with

has a

has a

has a

points to

can create

550 Lotus Notes Release 4.5: A Developer’s Handbook

LNViewFolder object for that purpose, such a navigator object has the
advantage that you don’t lose the current position of the LNViewFolder
object, and allows you to access entries at arbitrary levels. Furthermore, you
can create multiple navigators to navigate through different collection areas
simultaneously.

Regardless of whether you navigate through a collection with an
LNViewFolder or LNVFNavigator object, the current position is
represented by an LNVFEntry object. Of course, there is an exception: if the
collection is empty, this entry doesn’t exist. Each entry can provide you
with its position in the collection which is represented by an LNVFPosition
object. You can use such objects to compare the positions of different entries
in the collection. The order is defined by the order in which they appear in
the view or folder.

Opening and Closing View and Folders
You create an LNViewFolder object by calling the function
LNDatabase::GetViewFolder. In order to access the collection, you then
need to open it. When you don’t need the collection any more, call the Close
function for that object to release the associated resources.

Opening a Collection

LNSTATUS Open (LNVFOPENFLAGS flags =
LNVFOPENFLAGS_DEFAULT)

LNSTATUS Open (LNVFOPENFLAGS flags,
 const LNDatabase &db)

LNSTATUS Open (LNVFOPENFLAGS flags,
 const LNString &pathname,
 const LNString &server = “”)

When you specify a database as argument, the view or folder is
assumed to reside in that database, rather than the database containing
this view/folder note.

Closing a Collection

LNSTATUS Close()

Navigational Functions
You can use an opened LNViewFolder object to navigate a view or folder in
the following ways:

Go to the first or last entry in the collection.

LNSTATUS GotoFirst (LNVFEntry *entry = 0)
LNSTATUS GotoLast (LNVFEntry *entry = 0)

Chapter 20: Accessing Notes With the Notes C++ API 551

Go to the next or previous entry in the collection.

LNSTATUS GotoNext (LNVFEntry *entry = 0)
LNSTATUS GotoPrevious (LNVFEntry *entry = 0)

Go to a main, parent, or child document.

LNSTATUS GotoMain (LNVFEntry *entry = 0)
LNSTATUS GotoParent (LNVFEntry *entry = 0)
LNSTATUS GotoChild (LNVFEntry *entry = 0)

Go to the first or last sibling having a common parent.

LNSTATUS GotoFirstSibling (LNVFEntry *entry = 0)
LNSTATUS GotoLastSibling (LNVFEntry *entry = 0)

Note A sibling entry is one that has the same parent as the
current entry.

There are even more functions to go to the next or previous category,
non-category, main-topic, parent document, or sibling document.
Furthermore, there is an extensive set of selective and full-text search
functions for collection objects available. Please refer to the API User Guide
for details.

All these functions affect the current position of the LNViewFolder object. If
you pass the address of a collection entry object as argument, it is initialized
with the current entry.

Caution Not all navigation functions are valid in all positions of the
LNViewFolder object. Whenever a next or previous entry cannot be found,
the warning status LNWARN_NOT_FOUND is returned. So, you should
test the return value of these functions.

The current position of an LNViewFolder object is represented by an
LNVFPosition object. Using the following functions, you can retrieve it, and
you can use it to set the collection object to a particular position:

LNSTATUS GetPosition (LNVFPosition *position)
LNSTATUS SetPosition (const LNVFPosition &position)

As mentioned previously, you can also create a new independent navigator
object. An LNViewFolder object provides the functions to initialize a
navigator object with all collection entries, the immediate children, or all
descendants of the current entry:

LNSTATUS GetEntries (LNVFNavigator *navigator)
LNSTATUS GetChildren (LNVFNavigator *navigator)
LNSTATUS GetDescendants (LNVFNavigator *navigator)

Caution If the collection is a view, its contents are recomputed during
object construction. This means that the original LNViewFolder object
might contain different entries than the new navigator.

552 Lotus Notes Release 4.5: A Developer’s Handbook

Accessing Collection Entries
Once you have positioned the LNViewFolder or LNVFNavigator object at
an appropriate entry, you can retrieve its type, specific column values of
that entry, and the complete document associated with it:

Accessing a column either by position number or by name.

LNItem LNVFEntry::operator [] (LNINT n)
LNItem LNVFEntry::operator [] (LNString name)

Some restrictions apply: you cannot access hidden columns; they are
not counted for determining the position number. Some more
restrictions apply to categorized columns; refer to the API Reference
Guide for details.

Accessing the entire document.

LNSTATUS GetDocument (LNDocument *document)

Retrieving the entry type.

LNBOOL IsCategory ()
LNBOOL IsMainTopic ()
LNBOOL IsResponse ()
LNBOOL IsTotal ()

Example
By accessing views and folders, we’re now able to perform some
computations on our discussion database. In the following example, we
compute the average number of responses per topic in the main view.

LNNotesSession session;
LNDatabase db;
LNViewFolder view;
LNVFEntry mainEntry;
LNINT mainTopics = 0,
 totalResponses = 0;

LNSetThrowAllErrors(TRUE); // Throw all LNSTATUS errors
try
{
 session.Init();

 // Open the database
 session.GetDatabase("discusapi.nsf", &db);
 db.Open();

 // Get the "All Documents | ($All)" view and open it
 db.GetViewFolder("($All)", &view);
 view.Open();

Chapter 20: Accessing Notes With the Notes C++ API 553

 // Get the first main entry
 view.GetEntry(&mainEntry);

 // Get the number of entries at the same level
 mainTopics = mainEntry.GetSiblingCount();

 // Iterate over all main entries and count their
 // descendants.
 do
 totalResponses += mainEntry.GetDescendantCount();
 while(view.GotoNextMain(&mainEntry) != LNWARN_NOT_FOUND);

 // Print the average number of responses per topic
 if (mainTopics > 0)
 cout << "Number of Main Topics: " << mainTopics
 << endl
 << "Average Responses per Topic: "
 << (double) totalResponses / mainTopics << endl;
 else
 cout << "There is no discussion." << endl;
}

A Closer Look at Rich Text Items
Richtext items are the most powerful items that a Notes document can
contain. They form a single big container that can store stylized text, tables,
document links, OLE objects, file attachments, bitmaps, and a combination
of all of these.

The richness of these items requires a finer grained structure for its
representation than the class LNRichText provides. You will need to know
about this representation, because it defines how you access individual
elements in a richtext item.

The C++ Representation of Richtext Items
A richtext item can be considered as a sequence of containers of different
types. The container type determines the elements in it. Before talking in
terms of C++ classes, let us consider an example:

Arial normal Arial bold Courier italic and bold

554 Lotus Notes Release 4.5: A Developer’s Handbook

In this figure, the complete richtext item is a generic container that contains
five other containers; four of them contain stylized text, that is text
associated with exactly one style defined by a font, a size, and a face. In the
middle is a file attachment, which is a so-called composite data element; it
is enclosed in a generic container.

For all these container types, the C++ API defines separate classes
representing the properties of the contained elements. When you access a
richtext item, you will navigate through a sequence of such containers
which is determined by the contents of the richtext item. The LNRichText
class maintains the current position in the container by an object of the class
LNRTCursor. You use this cursor object like a cursor of a text editor: it
supplies functions to move to the next, previous, first, and to the last object
in the richtext item.

The following figure shows the complete class hierarchy for richtext items:

The class LNRTObject is the base class for all other richtext container
classes. It provides functionality common to all types of containers. The
container objects that can currently appear in a richtext item, are objects of
the classes LNStylizedText and LNCompositeData. It is planned to derive
more classes from LNRTElement to enable the representation of tables and
hotspots, for example.

The distinction between LNRTContainer and LNRTElement class objects
influences the way in which you access them. An LNStylizedText object
contains a sequence of characters that you can access individually by
LNRTCursor movements. An object of a class derived from LNRTElement
is indivisible.

contains
linked with
inherits from

LNRTCursor

LNRTObject

LNRTContainer

LNStylized
Text

LNRTElement

LNComposite
Data

LNRichText
positioned by

Chapter 20: Accessing Notes With the Notes C++ API 555

Now, we will describe how you navigate through richtext using these
classes. We have already described how you get access to a richtext item; in
the same way as to any other item.

Navigating Through a Richtext Item
Given a richtext item, you call one of the following functions to obtain a
cursor for that item:

LNSTATUS GetCursor (LNRTCursor *cursor)

LNSTATUS GetEndCursor (LNRTCursor *cursor)

The first function returns a cursor that points to the first position in the
item; the second form returns a cursor that points to the end of the last
position.

Using this cursor object, you can now navigate through the container
sequence:

LNSTATUS GotoFirst (LNRTTYPE type, LNRTObject *object)

LNSTATUS GotoLast (LNRTTYPE type, LNRTObject *object)

LNSTATUS GotoNext (LNRTTYPE type, LNRTObject *object)

LNSTATUS GotoPrevious (LNRTTYPE type, LNRTObject *object)

The first argument for all these functions is the type of container you
want to go to. You can specify one of the following values:

LNRTTYPE_STYLIZED_TEXT

A stylized text container.

LNRTTYPE_COMPOSITE_DATA

A composite data object such as a file attachment.

LNRTTYPE_CONTAINER

Any container object; currently either a generic container or a
stylized text container.

LNRTTYPE_ELEMENT

Any indivisible richtext element; currently only a composite data
object.

LNRTTYPE_OBJECT

Any richtext object.

You may notice, each of these values specify exactly one class position
in the class hierarchy, together with all descendants of that class.

The second argument to these functions is an optional output argument
by which you access the richtext object at the new position.

556 Lotus Notes Release 4.5: A Developer’s Handbook

There are many more navigation functions. For example, you can position
the cursor by searching for a text string; refer to the API User Guide for
details.

Accessing and Modifying Richtext Items
In the simplest form, you simply append some text or another richtext item
to the richtext item using the LNRichText::Append function.

When you want to insert or delete some text or a composite object at a
particular position in the item, do the following:

1. Use the navigation functions to position the cursor of the LNRichText
object.

2. Retrieve the cursor object.

3. Call either the LNRichText::Insert, or the LNRichText::Delete function.

To give you a simple example, here’s a program that opens the sample
discussion database, retrieves the first document, and then inserts a stylized
text at the third position:

 LNNotesSession session; // a session object
 LNDatabase discussDB; // a database object
 LNDocumentArray documents; // a document container
 LNDocument doc; // a document
 LNRichText rtItem; // a richtext item
 LNRTCursor rtCursor; // a richtext cursor

 LNSetThrowAllErrors(TRUE); // Enable exceptions

 try
 {
 session.Init();

 // Get the database and open it
 session.GetDatabase ("DISCUSAPI.NSF", &discussDB, "");
 discussDB.Open ();

 // Get all documents of the database
 discussDB.GetDocuments (&documents);

 // Retrieve the first document and open it
 doc = documents[0];
 doc.Open ();

 // Access the Body richtext item
 doc.GetItem ("Body", &rtItem);

 // Get a cursor for it
 rtItem.GetCursor (&rtCursor);
 // Skip the first two richtext objects:

Chapter 20: Accessing Notes With the Notes C++ API 557

 // Ignore warnings that are returned when there is no
next
 // object.
 // If they do not exist, leave the cursor behind the last
 // object.
 rtCursor += 2;
 // equivalent to:
 // rtCursor.GotoNext (LNRTTYPE_OBJECT);
 // rtCursor.GotoNext (LNRTTYPE_OBJECT);

 // Now insert a new text
 rtItem.Insert ("The first insert!", &rtCursor);

 // save the changes
 doc.Save ();

 // Close the database
 discussDB.Close();
 }

Creating Notes Server Add-In Tasks

This section describes how to use the Notes C++ API to create custom
Notes server add-in tasks.

What Are Server Add-In Tasks?
A server add-in task is an executable program that runs alongside other
tasks that make up the Notes server software. It allows you to perform any
operation on Notes databases accessible to the Notes server.

You may use server add-in tasks for a single operation, but its main
purpose is to perform some operations periodically.

Note If you want to create a server add-in to perform a single operation,
you may want to consider a stand-alone program as a well-suited
alternative. Apart from the fact that a server add-in automatically logs in
with the server account, there is no other difference.

For example, suppose that you want to retrieve the contents of a relational
database periodically to update corresponding documents in a Notes
database. You can do this with an add-in task as follows:

1. Develop a stand-alone program that contains all of the C++ API code
needed to read the relational database and update the Notes database.

2. Add scheduling code to the program to extend it to a Notes server
add-in. For example, you can specify the task to execute once per hour.

3. Start the add-in task with the Notes server software.

558 Lotus Notes Release 4.5: A Developer’s Handbook

The add-in will run until the Notes server is shut down. Every hour, the
add-in task will check the relational database for changes, and write these
changes to the Notes database.

If some other time interval between executions of the task is required, the
timing control code may be modified to specify any schedule, such as once
each night at 2:00 AM, or once every 5 seconds. Add-ins may also be
written to execute more than one job, each with its own schedule.

In the following, we will present you with the details of how to add the
required scheduling code to an already existing C++ API program.

Program Structure of an Add-In Task
While the structure of an add-in task that executes only once is identical to
a stand-alone API program, for periodic scheduling it is distinguished from
other API applications by the presence of an LNServerAddin object,
representing the add-in task. The following figure shows how this new class
is related to those you already know:

In addition to the other API code you write to work with Notes, you will
need to insert calls to control the execution of the server add-in.

First, declare an LNServerAddin object, and include one call to
LNNotesSession::GetServerAddin, which actually retrieves the
LNServerAddin object for your Notes session. The function
GetServerAddin is declared as follows:

LNSTATUS GetServerAddin (const LNString &task,
 const LNString &text,
 LNServerAddin *addin)

The first and second arguments are the task name and description used for
the default status line. If you issue a SHOW TASKS command at the server
console, these arguments will be displayed together on a single line. The
third argument is the address of an LNServerAddin object which will be
initialized on return.

LNServerAddin

LNNotesSession

linked with

can create

Chapter 20: Accessing Notes With the Notes C++ API 559

Once you have called GetServerAddin, you can call LNServerAddin
functions as needed to control the execution of your server add-in task.

Controlling the Task Execution
The functions provided by the class LNServerAddin allow you to set up an
appropriate schedule interval for your server add-in:

Task scheduling.

LNBOOL IsNewDay ()
LNBOOL HaveMinutesElapsed (LNINT n)
LNBOOL HaveSecondsElapsed (LNINT n)

These functions return TRUE once every day, n minutes or seconds
since the add-in started.

For example, to schedule a task to execute every 2 hours, you would
call HaveMinutesElapsed(120), and when this call returned a non-zero
value, execute the task.

Note These functions do not block your add-in. To yield the process
control to the Notes server, use one of the following functions.

Yielding processor control.

LNBOOL Idle ()
LNBOOL Idle (LNINT msecs)

These functions yield control of the processor to Notes so that other
tasks can execute, and receive control back when the server decides the
add-in may proceed.

If no argument is specified, Notes decides when the add-in should
resume. If an argument is specified, Notes suspends the add-in for the
specified number of milliseconds; if zero is specified, the function
returns immediately.

A TRUE value is returned from the function call when the Notes server
wants the add-in to shut down.

Checking for task termination conditions.

LNBOOL ShouldAddinTerminate ()

The function ShouldAddInTerminate will return TRUE when the Notes
server wants the add-in to shut down.

If the task execution of your add-in requires a long time to complete,
you may want to call this function periodically to enable the add-in to
respond to a termination request sent by the Notes server.

560 Lotus Notes Release 4.5: A Developer’s Handbook

Putting all these functions together, the main loop of a server add-in looks
like this:

LNNotesSession session; // Create a session object
LNServerAddin addin;

// Initialize the session
session.init ();

// Get the associated add-in object
session.GetServerAddin("Add In's Name",
 "<Your description here>",
 &addin);

while (TRUE)
{
 // check the schedule condition (day, n minutes, n
seconds)
 if (addin.HaveSecondsElapsed (120))
 {
 // perform the operation
 }
 else
 if (addin.Idle (120) == TRUE)
 {
 // Notes server requests you to shut down
 // So, clean up and return
 return;
 }
}

Note In general, you may prefer a call to Idle with an explicitly specified
wait time, because it may affect the performance of the Notes server.

Status and Log Information of an Add-In Task
When you create a server add-in task, you can provide users with
information about the status of the task by specifying messages to be
displayed on the server console and stored in the server LOG.NSF log file.

Every add-in task you create has one default status line. If you have a
complex task that performs several sub-operations, you may define
separate status lines for each of them.

Chapter 20: Accessing Notes With the Notes C++ API 561

The following functions in the LNServerAddin class enable you to work
with the default add-in task status line and the server log:

Change the task name.

void SetDefaultStatusLineTaskName (const LNString &name)

Change the task description.

void SetDefaultStatusLineText (const LNString &text)

Add an entry in the server log LOG.NSF.

void AppendLogMessage (const LNString &message)

This function is also extremely useful when you need to debug your
add-in.

Example: A Server Add-In to Compact Databases
The following C++ program implements a Notes server add-in that runs
once every day, and compacts a particular database in the local NOTES
directory. You can extend it easily by directory search functions to compact
all databases stored on the server once a day.

#include <iostream.h>
#include <lncppapi.h>

// Function to compact a database.
// Add here more sophisticated code to compact all
// databases in the local NOTES directory.
void compact_database (LNNotesSession &session)
{
 LNDatabase db;

 session.GetDatabase ("DISCUSAPI.NSF", &db);

 db.Compact ();
}

void main (int argc, char *argv[])
{
 LNNotesSession session; // Create a session object
 LNServerAddin addin;

 LNSetThrowAllErrors(TRUE); // Enable exceptions

 try
 {

562 Lotus Notes Release 4.5: A Developer’s Handbook

 // Open a session and get the add-in object
 session.Init();
 session.GetServerAddin("Database Compactor",
 "Idle",
 &addin);
 while (TRUE)
 {
 // Start it once a day: returns TRUE
 // at or after 2am in the morning
 if (addin.IsNewDay ())
 {
 // Update the status line
 addin.SetDefaultStatusLineText ("Busy");

 // Call the task execution function
 compact_database(session);

 addin.SetDefaultStatusLineText ("Idle");
 }
 // Here, we will wait always one hour:
 // it doesn't matter whether the task is
 // executed at 2am or at 3am
 if (addin.Idle(3600000) == TRUE)
 {
 addin.AppendLogMessage (
 "Accepting request to shut down");
 return;
 }
 }
 }
 catch(LNSTATUS error)
 {
 // Handle errors:
 // We're on the server, so write it into the log.
 char errorBuf[LNERROR_MESSAGE_LENGTH];

 LNGetErrorMessage(error, errorBuf);
 addin.AppendLogMessage ("An error occurred: ");
 addin.AppendLogMessage (errorBuf);
 }
}

Chapter 20: Accessing Notes with the Notes C++ API 563

Appendix A
Special Notices

This publication is intended to help you develop Notes applications based
on Lotus Notes Release 4.5.

References in this publication to IBM products, programs, or services do
not imply that IBM intends to make these available in all countries in which
IBM operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM products, programs, or services
may be used. Any functionally equivalent program that does not infringe
any IBM intellectual property rights may be used instead of the IBM
product, program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific
hardware and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(“vendor”) products in this manual has been supplied by the vendors and
IBM assumes no responsibility for its accuracy or completeness. The use of
this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer’s ability to evaluate
and integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this
document should verify the applicable data for their specific environment.

565

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

IBM

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

The following are trademarks of Lotus Development Corporation in the
United States and/or other countries.

DataLens® Notes ViP®
InterNotes Notes Mail®
InterNotes Web Publisher NotesPump
Lotus® NotesSQL
Lotus Notes Reporter Notes/FX
Lotus Notes® Phone Notes®
Lotus Notes ViP® Phone Notes Mobile Mail
Lotus @SQL® SmartIcons®
LotusScript® Video Notes
Notes Word Pro®
Notes HiTest

566 Lotus Notes Release 4.5: A Developer’s Handbook

Appendix B
Related Publications

The publications listed in this section are considered particularly suitable
for a more detailed discussion of the topics covered in this redbook.

International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks.”

LotusScript for Visual Basic Programmers, IBM form number
SG24-4856-00, Lotus part number 12498

Secrets to Running Lotus Notes: The Decisions No One Tells You How to
Make, IBM form number SG24-4875-00, Lotus part number AA0424

Lotus Notes Release 4 In a Multiplatform Environment, IBM form number
SG24-4649-00

IBM PC Server and Lotus Notes Integration Guide, IBM form number
SG24-4857-00

Lotus Notes on AIX Systems Installation, Customization and Administration,
IBM form number SG24-4694-00

Using ADSM to Back Up Lotus Notes, IBM form number SG24-4534-00

A complete list of International Technical Support Organization
publications, known as redbooks, with a brief description of each, may be
found in:

International Technical Support Organization Bibliography of Redbooks, IBM
form number GG24-3070.

Related Publications

The publications listed in this section may also be of interest:

Lotus Notes Network Design, John Lamb and Peter Lew, McGraw-Hill,
ISBN 0-07-036160-6, IBM form number SR-7378-00,
http://www.infor.com:53311/cgi/getarec?mgh28004

567

Network Security, Charlie Kaufman, Radia Perlman and Mike Speciner,
Prentice Hall, ISBN 0-13-061466-1,
http://www.prenhall.com/013/061465/06146-5.html

How to Plan, Develop, and Implement Lotus Notes in Your Organization,
Mike Falkner, John Wiley, ISBN 0-471-12570-9, IBM form number
SR23-7262-00,
http://www.wiley.com/compbooks/catalog/08/12570-9.html

Lotus Notes 4 Administrator’s Survival Guide, Andrew Dahl, Sams
Publishing, ISBN 0-672-30844-4, http://www.amazon.com/exec/
obidos/ats-query/8244-1222537-793221

Deployment and Beyond: The Executive Guide to Implementing Lotus Notes,
Mark Turrell, Imaginatik, fax: +44-171-336-8099,
http://www.imaginatik.com

ISSC Lotus Notes Operations Cookbook, IBM Internal publication,
ftp://ftp.atlissc.ibm.com/csoffice/docs/lotnotes/opcook.ps

568 Lotus Notes Release 4.5: A Developer’s Handbook

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out
about ITSO redbooks, CD-ROMs, workshops, and residencies. A form for
ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually
subject to change. The latest information may be found at URL
http://www.redbooks.ibm.com/redbooks.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager
BOOKs, and CD-ROMs) and information about redbooks, workshops, and
residencies in the following ways:

PUBORDER - to order hardcopies in the United States.

GOPHER link to the Internet - type gopher.wtscpok.itso.ibm.com.

Tools disks

To get LIST3820s of redbooks, type one of the following commands:

tools sendto ehone4 tools2 redprint get sg24xxxx package

tools sendto canvm2 tools redprint get sg24xxxx package (Canadian
users only)

Note The current redbook Lotus Notes Release 4.5: A Developer’s
Handbook is not available as a LIST3820 or in BookManager format.

To get lists of redbooks:

tools sendto wtscpok tools redbooks get redbooks catalog

tools sendto usdist mkttools mkttools get itsocat txt

tools sendto usdist mkttools mkttools get listserv package

To register for information on workshops, residencies, and redbooks:

tools sendto wtscpok tools zdisk get itsoregi 1996

For a list of product area specialists in the ITSO:

tools sendto wtscpok tools zdisk get orgcard package

569

Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks/redboooks.html

Note The current redbook Lotus Notes Release 4.5: A Developer’s
Handbook is also available in HTML format and in Adobe Acrobat
format on the World Wide Web. The URL is
http://www.lotus.com/devtools.

IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

ITSO4USA category on INEWS

Online - send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at
IBMMAIL.

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an e-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the
body of the note (leave the subject line blank). A category form and
detailed instructions will be sent to you.

570 Lotus Notes Release 4.5: A Developer’s Handbook

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs)
and information about redbooks, workshops, and residencies in the following ways:

Online Orders (Do not send credit card information over the Internet) — send orders to:
IBM Mail Internet
In United States usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: bookshop at dkibmbsh at ibmmail bookshop@dk.ibm.com

Telephone orders
United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish (+45) 4810-1020 - German
(+45) 4810-1420 - Dutch (+45) 4810-1620 - Italian
(+45) 4810-1540 - English (+45) 4810-1270 - Norwegian
(+45) 4810-1670 - Finnish (+45) 4810-1120 - Spanish
(+45) 4810-1220 - French (+45) 4810-1170 - Swedish

Mail Orders - send orders to:
IBM Publications IBM Publications IBM Direct Services
Publications Customer Support 144-4th Avenue, S.W. Sortemosevej 21
P.O. Box 29554 Calgary, Alberta T2P 3N5 DK-3450 Allerod
Raleigh, NC 27626-0570 Canada Denmark

Fax - send orders to:
United States (toll free) 1-800-445-9269
Canada (toll free) 1-800-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:
Index #4421 Abstracts of new redbooks
Index #4422 IBM redbooks
Index #4420 Redbooks for last six months

Direct Services — send note to softwareshop@vnet.ibm.com

On the World Wide Web
Redbooks Home Page http://ww.redbooks.ibm.com/redbooks
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl
The current redbook Lotus Notes Release 4.5: A Developer’s Handbook is also available
in HTML format and in Adobe Acrobat format on the World Wide Web. The URL is
http://www.lotus.com/devtools.

Internet Listserver
With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver.
To initiate the service send an e-mail note to annouce@webster.ibmlink.ibm.com with the
keyword subscribe in the body of the note (leave the subject line blank).

571

A
About Document

used in Domino, 328, 356
accelerator key, 205
access control, 78
Access Control List,

8, 21, 203, 283, 312
ability to create LotusScript

agents, 286
ability to read public

documents, 286
creating documents, 285
delete documents, 285
example, 130
for Domino users, 310
levels of access, 284
personal agents, 285
personal folders/views, 285
roles, 286
share personal

folders/views, 285
accessing Notes, 447, 460
accessing RDBMS from

Notes, 393, 394
ACL

see Access Control List
action bars, 81, 103

designing, 33
using in Domino, 347, 348, 349

action hotspots
in Domino, 347
using in Domino, 348, 349

action object, 142
action pane, 36
Action Publishing, 277
action scripts and formulas

where used, 133
actions, 36

adding to navigators, 113
in Domino, 352
using in Domino, 339

ActiveX, 253
activity documents, 477, 478
admin-backup activity

document, 481

admin-purge log activity
document, 482

administrator database,
470, 471, 472, 475

viewing, 504
advanced templates, 25
Agent Builder

window, 205, 208, 210
agent object, 142
Agent pop-up menu, 211
agent scripts and formulas

where used, 133
agents, 14, 35, 203

ability to create LotusScript
agents, 286

ability to create personal, 284
designing, 33
example of Web agent, 366
for NotesPump, 505
giving an agent a name, 205
log, 211
personal (ability to create), 285
sample of, 121
scheduling an agent, 206
select documents to be

processed, 207
using in Domino, 339, 361
written in LotusScript, 210

alias, 91
($All), 89, 91
All readers and above, 61
AllDocuments property, 131
AMQSAMPL.NSF, 518
Anonymous Form, 56
anonymous Web users, 311
API

C, 117
C++, 117
for Notes, 168
for NotesPump, 467
REXX, 117

application deployment, 4
application design, 4
application development, 4

and @Commands
in Domino, 341

and @Functions
in Domino, 339

and Domino folders, 336
and Domino navigators, 337
and Domino views, 336
and field types in Domino, 335
and form elements in

Domino, 334
and form properties in

Domino, 331
application development tools, 117
Application Profile form, 249

creating, 229
example, 226

application templates, 18, 117
Application Transaction Map, 516
Approval Cycle template,

118, 225, 226, 248
adding features, 252

Approval Logic subform, 226, 249
approval request, 234
approval window, 233
argument passing to LSX, 191
arguments

passing to Domino, 353
ARPANet, 297
attachments

using with Domino, 342
authentication, 8

for Domino, 310
registering Web users

(Domino), 309
Author access, 284, 312
authors names, 290
Auto Launch, 58
automatically refresh fields, 57

B
back-end classes, 124, 126, 151
background color of forms, 59
BASIC, 123
Basics settings

specifying for Domino in server
document, 304

border style, 235

Index-1

Index

A Developer's Handbook
Please note that the page numbers listed in the Index refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

breakpoints, 164
browser, 13, 131
built-in functions, 160
button class, 126
button object, 139
button scripts and formulas

where used, 133
buttons, 81, 84

and Domino application
development, 334

in Domino input forms, 330
Submit, description of, 330

C
C programming language, 117

header files for LSX, 180
C++ API, 531, 532

built-in data types, 533
common classes, 534
error handling, 537
using, 538

C++ class hierarchy, 534
C++ programming language,

117, 171
CA, certification authority, 312
Cache

specifying directory for
Domino, 307

specifying shutdown options for
Domino, 307

specifying size for Domino, 307
Calendar Connector, 217
calendar server, 218
calendar view, 214, 221

minimum requirements, 221
calendaring and scheduling, 7, 213

$PublicAccess field, 286
ability to read public

documents, 286
date control, 223
time control, 224
write public documents, 286

cascading a view, 95
case study, 427
categories

collapsing, 53
expanding, 53

Categories field, 67
categorizing view columns, 96
CCD table, 489
Certification Authority, 312
CGI, 300, 328, 331

and $$Return field, 331

capturing variables in
Domino forms, 332

directory, specifying for
Domino, 307

URL path, specifying for
Domino, 307

CGI variables
returning values, 332

CHCONSTS.TXT, 267
checkbox, for keywords, 68
CICS, 509
CICS link extra for

Lotus Notes, 515, 521
CICS link for Lotus Notes, 515, 516
class library, LS:DO, 415
class method arguments, LSX, 192
class property arguments, LSX, 194
classes

see Notes classes
Click event, 134

example, 140
client, supported platforms, 5
collapsible sections,

9, 29, 76, 77, 78, 235
colors, in programming pane, 44
column formulas

where used, 133
column headings for views, 93
column width, 99
COM, common object model, 184
@Commands

in Domino application
development, 341

Common Gateway Interface, 300, 331
Common Object Model, 184
compile errors, 161
computed field formulas

where used, 133
computed fields, 67
computed for display, 67
computed when composed, 67
conformance levels, 401, 449
connections in Oracle, 436
Consistent Change Data table, 489
containment hierarchy, 128
context sensitivity, 17
Control Store, 469, 470, 475
Conversion format

specifying for images
(Domino), 308

Copy Database dialog box, 22
copying a database, 20
Create - Other menu, 55
Create menu, 55

CreateObject
with Lotus Components, 265

creating
agents, 204
alarms, 213
application profile, 229
appointments, 213
buttons, 81, 84, 103
calendar views, 221
collapsible sections, 78
databases, 17, 52
documents, 52, 285
documents from a

Web browser, 317
Domino Home page, 329
fields, 63
forms for Domino, 330
graphic backgrounds, 111
graphic buttons, 112
hotspots, 83
HTML paragraph style, 345
hypertext links in Domino, 347
layout regions, 75
links, 83
links in Domino, 348
LotusScript agents, 286
LSX, 186
navigators, 109
new database, 18, 22
tables, 80
text boxes, 114
text pop-ups, 84
view columns, 101
views, 94
web applications, 321, 355

creating an LS:DO test
application, 409

cross-platform, 3, 4, 6
CurrentDatabase property, 129
customized actions, 14

D
data access features, 395
data exchange, 10
data integration, 11
Data Integrity Protection, 513
data transfer

using NotesPump, 465
data type mapping, 405
data types of an LSX, 189
database icon

ability to create, 284
database integration, 509

Index-2

database object, 134
database record, 124
database templates, 117, 118
databases

adding to workspace, 228
copying existing, 20
creating, 17
creating new, 18, 22
default size, 20
definition, 17
designing, 28
encrypting, 19, 22, 24
file extension, 19
inherit design, 25
integration of, 465
library type, 23
manager of, 313
maximum size, 5
multi database search type, 24
Name & Address

Book type, 24
personal journal type, 24
properties, 23
size, 24
size limit, 17
standard type, 23
viewing, 87

date control, 223
@DBColumn, 393, 430
@DBCommand, 393, 430
@DBLookup, 393, 430
debug mode, 163
debugger, 13, 161, 251
Default database form, 56
default form, 125
default value formulas

where used, 133
delete

database, 284
documents (ability to), 285
manager access, 284

Depositor access, 284, 312
design

inherit, 25, 225
design changes, 52
design elements, 12, 13, 54, 203

in subforms, 72
design pane, 37
Designer access, 284, 312
designing

action bars, 33
agents, 33
authors names, 290
databases, 28

encryption key, 290
field level security, 290
fields, 29
folders, 33
forms, 28
hotspots, 30
icons, 33
layout regions, 31
LSX, 184
navigators, 29
reader names, 289
section level security, 290
subforms, 29
tables, 31
views, 32, 89

Dialog List, 68
Dialogbox statement, 158
direct transfer activity

document, 482
Disable Field Exchange, 56
DisableRole method, 130
disabling the debugger, 162
Discussion template, 119
displaying

object browser, 131
DNS lookup

specifying for Domino, 304
DocLink, 63, 83
document fields

$$Return, 331
$Anonymous, 56
$UpdatedBy, 56, 125
form, 125
SaveOption, 157

Document Level Security, 289
Document Library template,

30, 32, 51, 76, 87, 119
document retrieval, 27
documents

and security, 289
creating from a Web browser, 317
creating of, 52
deleting from a Web browser, 317

Domino, 321, 355
accessing Notes mail with, 319
add-in task, 302
Home page, 329
passing arguments, 353
registering users, 355
starting at the console, 309
starting automatically, 309
stopping, 309
supported actions, 352
used Notes objects, 350

Domino.Action, 323
Domino logs

Access log, description, 315
Agent log, description, 315
CGI error log, description, 315
Referer log, description, 315

Domino server
file cache, description, 317
log files, description, 315

Domino SSL
specifying key file name for

Domino, 306
specifying port number for

Domino, 306
specifying port status for

Domino, 306
Domino Web server, 297

configuring, 303
creating secure Web

applications, 300
description of, 302
description of features, 300
interactive Web

applications, 300
requirements, 303
specifying configuration

settings, 304
specifying logging

settings, 308
Web application

development, 300
DoNotesFX, 270
DPROPR activity document, 488
dynamic library, 171

E
ECI, API for CICS, 515
ECL

see Execution Control Lists
editable fields, 67
editing view columns, 96
Editor access, 284, 312
enabling the debugger, 162
encrypt, 284
encrypting databases, 24
encrypting field contents, 291
encryption, 8, 19

creating keys, 290
sending keys, 291

Entering event, 134
error handler, 161
error handling

in Domino, 360

Index-3

error messages
sending to Web users, 365

Evaluate function, 152
event-driven programming, 13
event scripts

where used, 133
events

action object, 142
agent object, 142
button object, 139
Click, 134, 140
Entering, 134
Exiting, 134, 138
for database object, 134
for field object, 138
for form object, 62, 135
for view object, 135
Initialize, 134
list of, 134
Objectexecute, 134
Postdocumentdelete, 134
Postdragdrop, 134
Postmodechange, 134
Postopen, 134, 136
Postpaste, 134
Postrecalc, 134
programming, 38
Queryaddtofolder, 134
Queryclose, 134
Querydocumentdelete, 134
Querydocumentundelete, 134
Querydragdrop, 134
Querymodechange, 134
Queryopen, 134
Queryopendocument, 134
Querypaste, 134
Queryrecalc, 134
Querysave, 63, 134, 154
Regiondoubleclick, 134
sequence of, 134, 142, 145
Terminate, 134
viewing in browser, 40

events in Notes, 132
examples

accessing a field, 129, 130
accessing an ACLEntry, 130
application profile form, 226
Click event, 132, 140
Dialogbox, 158
Domino agent, 361
Domino user registration, 355
Domino Web application, 370
Evaluate function, 153
Exiting event, 138

Inputbox, 157
LSX, 187
Messagebox statement, 167
MQSeries and Lotus Notes, 529
navigator, 108
Postopen event, 136
Print statement, 166
registering users, 355
rich text field, 155
running CGI code, 331
scripted activity for

NotesPump, 496
searching in Domino, 386
sending messages to

Web users, 365
testing an LSX, 200
using HTML in Domino, 360
Web agent, 366

Execution Control Lists, 288
Exiting event, 134

example, 138
Extending Notes with other products

Notes API, 168
external development tools, 117

F
Field class, 126
field exchange, 269
field help, 69
field level security, 290
field matching, 503
field object, 138
field replication, 106
fields, 10

ability to create, 284
adding CGI to Domino forms, 332
Alignment tab, 70
Basics tab, 67
controlling with HTML in

Domino, 345, 384
creating of, 63
designing, 29
Dialog List, 68
encrypting field contents, 291
Fonts and Color tab, 70
Hiding tab, 71
keyword checkbox, 68
Option Button, 69
Options tab, 69
Print Option tab, 70
properties, and Domino

application development, 335
properties of, 66

reader names, 289
security, 314
types, and Domino application

development, 335
file attachments

using with Domino, 342
File Transfer Protocol, 298
First Attachment, 58
folders, 33, 35, 102

ability to create personal, 285
ability to share personal, 285
designing, 33
properties and Domino

application development, 336
security, 314

fonts, 25, 44
sizes, and Domino, 335
styles, and Domino, 335

footer, 25
form fields

see document fields
form flow in Approval Cycle, 248
form formulas

where used, 133
form object, 135
forms, 9, 35, 54

ability to create, 284
authors names, 290
Background tab, 59
creating for Domino, 330
Defaults tab, 56
designing, 28
disabling printing, forwarding,

copying, 61
elements, and Domino

application development, 334
encrypting field contents, 291
encryption key, 290
events for, 62
field level security, 290
how to name, 55
Inherit entire selected

document, 57
Launch tab, 58
On Create option, 57
On Open option, 57
Present mail send dialog, 58
Print tab, 60
properties basic tab, 55
properties, 54
properties, and Domino

application development, 331
properties, supported over the

Web, 334

Index-4

reader names, 289
section level security, 290
security, 314
Security tab, 60
show context pane option, 58
title of, 61
type of, 55

forms routing, 12
formula language, 39
formulas, 14, 117, 122, 142, 210

editor for, 41
hide-when, 149

Free-Time database, 217
Free-Time Manager, 216
free-time system, 216
front-end classes, 124, 125, 151
FTP, 298
full-text indexing, 27
full-text search, 13, 27
@Functions,

7, 14, 29, 33, 39, 90, 122, 123,
142, 150, 210, 394

@Environment and ECLs, 289
@Failure, using in

Domino, 360
@IsMember, 287
@Success, using in

Domino, 360
@UserName, 314
@UserRoles(), 287, 314
and Domino application

development, 339
Calendaring & Scheduling, 220
editor for, 41

functions, 147

G
Garbage collection

specifying interval for
Domino, 307

gateways, 9
GetFirstDocument method, 129, 131
GetFirstItem method, 129
GetNextDocument method, 131
GetView method, 129
GIFs

interlaced and Domino, 341
specifying settings for

Domino, 308
graphic backgrounds, 107
graphics

and Domino application
development, 334

H
header, 25
Header and Footer, 60
help documents, 34
hidden paragraph formulas

where used, 133
hide-when conditions, 72
hide-when formulas, 149

using in Domino, 314
hiding a paragraph, 72, 86
hiding HTML code, 374
hiding the subforms, 74
HiTest API, 14
Home page, 327, 329
Home URL, 329

specifying for Domino, 304
Host name

specifying for Domino, 304
hotspot scripts and formulas

where used, 133
hotspots, 14, 83, 109

and Domino application
development, 334

designing, 30
in Domino, 347

HTML, 298, 300, 327
adding to Domino

applications, 344
adding to fields for

Domino, 345
adding to views in

Domino, 346
adding to Web applications,

overview, 343
controlling fields in

Domino, 345
directory, specifying for

Domino, 307
example for using in

Domino, 360
hiding code in Notes, 374
including in formulas, 331
passthru, in Domino, 348, 349
syntax and Domino, 343
text paragraph style, creating for

Domino, 345
using links in Domino, 348

HTTP, 298, 300, 327
HTTP password

and registering Web users
(Domino), 309

HTTP server, 302, 370
settings, 304

Hypertext links
creating in Domino, 347, 348
using in Domino, 349

Hypertext Markup Language, 300
Hypertext Transfer Protocol, 300

I
IBM OfficeVision, 218
icons, 82, 88, 98

designing, 33
directory, specifying for

Domino, 307
URL path, specifying for

Domino, 307
IDE, 3, 12, 35, 122, 124
ILsiADTControl structure, 184
images

conversion file formats for
Domino, description of, 341

displayed on the Web, 338
GIFs, and Domino, 341
GIFs rendering and Domino,

description of, 341
interlaced rendering setting for

Domino, 308
JPEG image quality setting for

Domino, 308
JPEGs rendering and Domino,

description of, 341
progressive rendering setting for

Domino, 308
specifying conversion format for

Domino, 308
using passthru HTML with

Domino, 341
indexing, full-text, 27
Indigo, 326
InfoBox, shortcut, 238
Inherit entire selected document, 57
Inherit future design changes, 52
Initialization of an LSX, 178
Initialize event, 134
input forms

creating for Domino, 330
input translation, 69, 124
Input translation formulas

where used, 133
input validation, 69, 124
input validation formulas

where used, 133
Inputbox statement, 158
insert subform formulas

where used, 133

Index-5

installing an LSX, 201
Integrated Development

Environment,
3, 12, 35, 122, 124

integration, 9
Integration of an LSX, 178
Internet, 297
Internet applications, 322
Internet applications server, 300
InterNotes Navigator template, 120
Intranet, 299, 322
ISAM, 512

J
Java, 301, 328
JPEGs

progressive and Domino, 341
specifying settings for Domino,

308

K
key ring files, 312
keyword field formulas

where used, 133
keywords, 68

L
launch options, 26
layout regions, 75, 76, 77

and Domino application
development, 334

designing, 31
library database, 23
link documents, 477
link options documents, 478
linking to Web pages, 332
links

creating, 83
creating in Domino,

overview, 347
creating to other sites

(Domino), 349
to databases, 84
to forms and navigators, in

Domino, 348
list of events, 134
list of public databases, 24
LNPUMP.EXE, 472
local security, 284
Log files

see also Domino logs

specifying Error log for
Domino, 308

Logging settings
specifying for Domino in the

server document, 308
logical errors, 162
logs

specifying Access log for
Domino, 308

specifying Error log for
Domino, 308

specifying log filter for
Domino, 308

Lotus Chart Component, 257
CHCONSTS.TXT, 267

Lotus Comment Component, 262
Lotus Components

Action Publishing, 277
ActiveX, 253
adding Spreadsheet with

LotusScript, 264
and LotusScript, 264
CHCONSTS.TXT, 267
creating a distribution pack, 281
DoNotesFX, 270
events, 278
field exchange, 269
linking Chart and

Spreadsheet, 273
Lotus Chart Component, 257
Lotus Comment Component, 262
Lotus Project Scheduler

Component, 260
Notes/FX, 255, 269
NotesFlow, 276
Object Types, 265
setting properties, 266
starter pack, 254
Template Builder, 279
what are they?, 253
who are they for?, 254

Lotus Components palette, 254
Lotus Components Template

Builder, 263
Lotus Draw/Diagram

Component, 261
Lotus File Viewer

Component, 258
Lotus Notes

network protocols, 6
platforms, 5
what is it?, 3

Lotus NotesPump, 465
Lotus Organizer, 213, 218

Lotus Project Scheduler
Component, 260

Lotus Script:Data Object, 11
Lotus Spreadsheet

Component, 256, 441
LotusScript, 4, 5, 7, 13, 29, 33, 40, 69,

114, 117, 122, 132, 142, 150,
171, 249, 439

ability to create agents, 286
adding Lotus Components with

CreateObject, 265
adding Spreadsheet Component

with, 264
and Execution Control Lists, 288
and Lotus Components, 264
benefits of, 123
Calendaring & Scheduling, 219
classes for NotesPump, 492
client API, 176
DoNotesFX, 270
editor for, 41
exporting a program, 46
extending the architecture, 176
functions, 147
importing a program, 48
instance handle, 176
new events, 13
performance, 146
programming tips, 146
subroutines, 147
using in Domino, 339
using with MQSeries, 524
using with NotesPump, 466, 490

LotusScript:Data Object, 393, 394, 395
LotusScript Extensions, 117, 171
LS:DO, 9, 11, 13, 393, 394, 395

and ODBC, difference, 400
class library, 415
tracing and debugging, 405
when to use, 398, 430

LSX, 9, 117, 124, 171
arguments passing, 191
C header files for, 180
class registration utility, 180
creating of, 186
data types, 189
design considerations, 184
for NotesPump, 491
initialization of, 178
installing, 201
integration of, 178
loading of, 172
object creation, 179
object deletion, 179

Index-6

portability of, 185
prerequisites, 173
registering classes, 182
registration of, 202
termination of, 179
testing of, 199

LSX Toolkit, 173
structure, 175
utilities, 176

LSXBASE.CPP, 180
LSXBASE.HPP, 180
LSXCOMM.CPP, 180
LSXCOMM.HPP, 180
LSXLODL, 176
LSXREG, 176
LSXRUN, 176, 201
LSXSESS.CPP, 181
LSXSESS.HPP, 181
LSXSESS.TAB, 181
LSXSESSION.CPP, 186
LSXSESSION.HPP, 186
LSXTEST, 176, 199

M
macros, 14, 28

see also agents
mail

using with Domino, 319
main design window, 36
Manager access, 313
managing the workspace, 17
mandatory design elements,

29, 30, 32
MAPI, 7
mapping data types, 405, 458
mapping resources, 456
Mapping settings

specifying CGI directory, 307
specifying CGI URL path, 307
specifying for Domino in

server document, 307
specifying HTML directory, 307
specifying icon URL path, 307
specifying Icons directory, 307

MATM, 516, 522
meeting rooms, 218
Merge replication conflicts, 56
Messagebox statement, 167
messaging, 29
messaging infrastructure,

3, 5, 7, 11
Messaging Queue Interface, 512
metadata, 483

methods
viewing in browser, 40

Microsoft, 9
Microsoft ODBC driver, 407
MIME, 300

description of, 342
mobile users, 8, 10
moving a column, 101
MPutMessageOptions class, 526
MQGetMessageOptions class, 525
MQI, 512
MQI, API for MQSeries, 515
MQLINK, 519
MQLINK.NSF, 518
MQLSX, 509, 510, 524

classes for, 525
limits, 527
setup for, 525
using, 526

MQMD, 526
MQMessage class, 526
MQPRocess class, 526
MQQueue class, 526
MQQueueManager class, 526
MQSeries, 11, 509

messages, 513
queue managers, 514
queues, 514

MQSeries link
setup of, 518

MQSeries link extra for Lotus Notes,
515, 521

MQSeries link for Lotus Notes, 515,
516

MQSeries link for Lotus Notes
extension, 509, 510, 511

MQSeries link LotusScript extension,
524

MQSeries message descriptor, 526
MQSession class, 526
Multi-Media Internet Mail

Extensions, 300, 343
multi-platform, 5, 13
multi-value separators, 69
multiple sorting, 98

N
naming

an agent, 205
navigators, 10, 27, 28, 35, 106

class, 126
designing, 29
example, 108

graphics, and Domino application
development, 337

objects, 107,
and Domino application
development, 337

pane, 88
properties, and Domino

application development, 337
Net.Marketing, 324
Net.Service, 326
network, 297

protocols, 6
Network News Transfer

Protocol, 300
network operating systems, 6
network requirements

for Domino, 303
New Database dialog box, 19
new features, 92
New Keywords field, 53
News groups, 297
NNTP, 300
No Access (in ACL), 284, 312
No log option

specifying for Domino, 308
non-relational DBMS, 512
Notes/FX, 9, 255

Action Publishing, 277
and Components, 269

Notes API, 168
Notes C++ API, 531, 532
Notes classes, 123, 124, 132

browser, 131
Button, 126, 132
examples, 129
extensions to, 171
Field, 126
hierarchical relation, 128
Navigator, 126
NotesACL, 126
NotesACLEntry, 126, 130
NotesAgent, 126
NotesDatabase, 126, 129, 130
NotesDateRange, 127
NotesDateTime, 127
NotesDbDirectory, 126
NotesDocument, 127, 129, 130
NotesDocumentCollection,

127, 130
NotesEmbeddedObject, 127
NotesForm, 127
NotesInternational, 127
NotesItem, 127, 129
NotesLog, 127

Index-7

NotesName, 128
NotesNewsLetter, 127
NotesRichTextItem, 127
NotesSession, 126, 129, 130
NotesTimer, 128
NotesUIDatabase, 125
NotesUIDocument, 126
NotesUIView, 126
NotesUIWorkspace, 125
NotesView, 126, 129
NotesViewColumn, 127

Notes link, in Domino, 347
Notes Release 4

Address Book, 229
NotesACL class, 126
NotesACLEntry class, 126, 130
NotesAgent class, 126
NotesDatabase class, 126, 129, 130
NotesDateRange class, 127
NotesDateTime class, 127
NotesDbDirectory class, 126
NotesDocument class, 127, 129, 130
NotesDocumentCollection

class, 127, 130
NotesEmbeddedObject class, 127
NotesFlow, 276
NotesFlow Publishing page, 83
NotesForm class, 127
NotesInternational class, 127
NotesItem class, 127, 129
NotesLog class, 127
NotesName class, 128
NotesNewsLetter class, 127
NotesPump, 465

activity documents, 478
admin-backup activity

document, 481
admin-purge log activity

document, 482
agents, 505
direct transfer activity

document, 482
DPROPR activity record, 488
example, 370
link documents, 477
link options documents, 478
polling activity document, 484
replication activity document, 485
scripted activity documents, 490
server document, 476
supported operating systems, 465

NotesPump administration, 475
NotesRichTextItem class, 127
NotesSession class, 126, 129, 130

NotesSQL, 447
limitations, 455
when to use, 448

NotesTimer class, 128
NotesUIDatabase class, 125
NotesUIDocument class, 126
NotesUIView class, 126
NotesUIWorkSpace class, 125
NotesView class, 126, 129
NotesViewColumn class, 127
Nothing, special value, 131
NSFnet, 297

O
object browser, 40, 49, 131

viewing LSX classes, 172
object classes

see Notes classes
object orientation, 4, 13
Objectexecute event, 134
objects, 132

used in Domino, 350
OCX, 441
ODBC, 9, 11, 398

when to use, 399
ODBC access, 394, 441
ODBC Administrator, 406
ODBC and LS:DO, difference, 400
ODBC data sources, registering, 403
ODBC drivers, 402
ODBCConnection, 395, 417, 441
ODBCDisconnect method, 441
ODBCQuery, 395, 419
ODBCQuery method, 441
ODBCResultSet, 395, 420
OLE, 9, 83, 123
OLE objects

and Domino application
development, 334

On Create option for forms, 57
On Error statement, 160
On Open option for forms, 57
Open Data Base Connectivity, 9
operating systems, 5
Operation Information settings

specifying for Domino in server
document, 307

Option Button, 69
Option Declare, 149, 250
Option Public, 146, 149
optional design elements, 29, 31, 33
Oracle, connections, 436
Oracle LSX, 393, 433

OracleConnection class, 436
OracleSession class, 437
OTHER.CPP, 181
OTHER.HPP, 181
OTHER.TAB, 181

P
parent preview feature, 82
performance, 150, 154

of forms, 149
of LotusScript, 146

performing a workflow, 238
Person documents, 311

creating for Web users
(Domino), 309

personal agents
ability to create, 285

personal folders/views
ability to create, 285

personal journal database, 24
Personal Journal template, 119
personal on first use view, 96
Personal Web navigator, 301
platforms, 5, 123
polling activity document, 484
portability of an LSX, 185
Postdocumentdelete event, 134
Postdragdrop event, 134
Postmodechange event, 134
Postopen event, 134

example, 136
Postpaste event, 134
Postrecalc event, 134
prerequisites for LSX, 173
Present mail send dialog, 58
primary key/timestamp

replication, 486
primary key replication, 485
print options, 25, 70
Print statement, 166
private agents, 203, 205
private folders, 102
private key, 311
private view, 95
programmable objects, 132
programming pane, 37, 90, 210

colors, 44
fonts, 44

properties
of databases, 23
of documents, 105
of fields, 66
of forms, 54

Index-8

of layout regions, 77
of sections, 79
supported over the Web, 334
viewing in browser, 40
with Lotus Components, 266

Properties SmartIcon, 23
protocols

supported, 6
$PublicAccess

in form design, 286
Public Address Book

adding Web users to
(Domino), 309

public agents
ability to create, 284

public key, 311

Q
query tools, 447
Queryaddtofolder event, 134
Queryclose event, 134
Querydocumentdelete

event, 134
Querydocumentundelete

event, 134
Querydragdrop event, 134
Querymodechange event, 134
Queryopen event, 134
Queryopendocument event, 134
Querypaste event, 134
Queryrecalc event, 134
Querysave event, 134

R
RDBMS, 10

accessing from Notes, 393, 394
read public documents, 286
Reader access, 284, 312
reader names, 289
real-time data access, 395
recommended design

elements, 33
refresh icon, 89
Refresh method, 125, 154
Regiondoubleclick event, 134
registering

Web users (Domino), 309
Registering an LSX class, 178
registering ODBC

data sources, 403
registration of an LSX, 202
relational databases, 4, 10, 11

Release 4.5 enhancements, 14
Reload method, 154
removing subforms, 74
renaming a navigator, 111
replication, 4, 8, 10, 11
replication activity document, 485
replication conflicts, 56
replication formulas

ability to create/modify, 284
where used, 133

replicator, 17
reserved fields, 105
resizing the column, 99
response form, 63
responses, 56

to Web users, 331
Resume statement, 160
$$Return field, 360, 385

in Domino, 331
ways to use in Domino, 332

REXX programming language, 117
rich text, 9, 10, 124
rich text item

working with, 155
roles, 286

$$WebClient, 287
@IsMember, 287
@UserRoles(), 287
working with roles, 287

Room Reservation template, 31, 120
routine task, 203
routing delivery type, 226, 230
routing type, 226, 230
ruler, 85
run-time errors, 160, 161

S
SaveOption field, 157
scope

of programmable objects, 132
screen resolutions, 81
script editor, 13, 41, 42
script libraries, 149
scripted activity documents, 490
search, 27
Search Builder, 55
searching

in Domino, 351
options dialog box

(Domino), 318
scripts, 45
viewing results on the Web

(Domino), 318

section access formulas
where used, 133

section level security, 290
section title formulas

where used, 133
sections

and Domino application
development, 334

collapsible, 9, 29
Secure Electronic Transaction, 325
Secure Sockets Layer, 310, 311
security, 8, 283

authors’ names, 290
creating keys, 290
document level security, 289
documents, 314
encrypting field contents, 291
encryption key, 290
Execution Control Lists, 288
field level security, 290
fields, 314
local, 284
reader names, 289
section level security, 290
sending keys, 291
views an folders, 314

selection formulas
where used, 133

sending
mail, 203

sequence of events, 134
server, supported platforms, 5
Server document

specifying Basics settings for
Domino in, 304

specifying logging settings for
Domino, 308

specifying Mapping settings for
Domino, 307

specifying Operations
Information settings for
Domino, 307

settings
for Web agents, 367

share personal
folders/views, 285

shared agents, 203, 205
shared field

debugging, 147
shared folders, 102
shared template

components, 120
shared view, 95
sharing a field, 65

Index-9

shortcuts
for InfoBox, 238
within editor, 42

show action formulas
where used, 133

Show context pane, 58
showing

object browser, 131
simple actions, 13, 38, 117, 121
simple agents, 207
Simple Mail Transfer

Protocol, 297, 300
SiteCreator, 323, 324
SmartIcons

where used, 133
SmartSuite, 9
SMTP, 297, 300
SNMP, 506
sorting within view

columns, 96
SSL, 310, 311
standard collapsible section, 79
standard database, 23
Store form in document, 56
storing

documents in databases, 124
storing folders, 102
style, 25
subforms, 9, 72

designing, 29
hiding, 74
properties, 74
removing, 74
Submit button, 334
in Domino input forms, 330

subroutines, 147
supported operating systems, 5
syntax errors, 42
system-provided actions, 14
system requirements

for Domino, 303

T
tables, 80

and Domino application
development, 334

designing, 31
displaying over the Web, 382

TCP/IP, 298
TCP/IP port

specify port status for
Domino, 304

specifying for Domino, 304

TCP/IP protocol, 297
Telnet, 298
Template Builder, 263, 279
templates, 14, 18, 118

advanced, 25
Document Library, 51
mail, 213
room reservation, 218

Terminate event, 134
testing an LSX, 199
text

colors, and Domino, 335
formatting for Web

applications, 335
properties, and Domino, 335

text paragraph styles
creating an HTML style for

Domino, 345
text pop-ups, 84
threads

specifying maximum active for
Domino, 305

specifying minimum active for
Domino, 305

time control, 224
Time stamp

specifying for Domino, 308
transaction oriented

systems, 509, 514
twisties, 32, 53, 79

U
UI classes, 124, 125
UNICODE, 185
UNID

used in Domino links,
description of, 347

Uniform Resource Locator see URL
Universal ID

and Domino links, 347
Universal Relation Table, 456
Universal Resource

Locator, 298, 327
UnprocessedDocuments

property, 211
URL, 298, 300, 327

and @Command formulas in
Domino, 341

creating links in Domino, 347
issuing commands for

Domino, 349
special format for Domino, 349
syntax for Domino, 349

Use statement, 149
USELSX statement, 172, 405, 434
user activity, 24
user authentication

registering Web users
(Domino), 309

user interface, 7
user interface classes, 124
user scripts, 122, 149
using the C++ API, 538
using the debugger, 165, 166

V
variable/property inspector, 13
variables

declaration of, 146, 149
naming of, 147

variants
used for rich text items, 155

Versioning field, 56
View

specifying default number of lines
for Domino, 308

View Builder window, 89
view object, 135
view pane, 88
viewing appointments, 214
viewing the database, 87
views, 10, 32, 35, 87

($All) special view, 89, 91
 properties and Domino

application development, 336
ability to create, 284
ability to create personal, 285
ability to share personal, 285
adding HTML to, in Domino, 346
Advanced tab, 93
alias, 91
Basics tab, 91
calendar type, 214
calendar view, 221
cascading, 95
categorizing columns, 96
column headings, 93
columns, 89
creating of, 94
editing of, 96
icons in, 98
InfoBox, 91
marking private, 95
marking shared, 95
Option tab, 92
personal on first use, 96

Index-10

security, 314
Security tab, 93
sorting within columns, 96
Style tab, 92

VIM, 7
Visual Basic, 123, 401, 451, 460

W
WAN, 297
Web, 297
Web Application ACL Settings, 313
Web browsers, 298, 301, 330
$$WebClient, 287, 374
Web Navigator

description of, 301
Web pages, 298
Web Site organization, 327
Web sites

creating links to in Domino, 349
Web Tour, 302
Web users

anonymous, 311
Welcome page

specifying for Domino, 304
what are Lotus Components, 253
what is Lotus Notes, 3
wide-area network, 297
window title, 61
window title formulas

where used, 133
workflow, 12, 29, 226
workflow properties, 249
workflow status, 233, 242, 247
workspace

adding database, 228
workspace, managing, 17
World Wide Web, 297, 298, 300
write public documents, 286
WWW, 298, 300

Index-11

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

❏ Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

❏ Invoice to customer number

❏ Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, MasterCard, and Visa. Payment by credit card not available in all
countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

	Edition Notice
	Abstract
	Contents
	Preface
	How This Document Is Organized
	The Team That Wrote This Redbook
	Comments Welcome

	Part 1 Notes Application Development
	Chapter 1 Getting Started
	What Is Lotus Notes?
	Notes Is an Environment for Application Development Deployment
	Notes ADE Is Mainstream, Modern, and Industrial
	Notes Is Complete
	Integrated Notes HTTP Server
	Integrated Messaging
	Native Calendaring & Scheduling
	Wide Range of Effective Security Features
	Effective Support of Mobile Users
	Access to External Data
	Notes Is a Document Database
	The Messaging Infrastructure Enables a New Class of Application
	Notes Has a Cross-Platform, Structured, BASIC-Compatible Programming Language
	You Can Leverage a Range of Development Skills
	Major Enhancements of Release 4.5

	Chapter 2 Creating Notes Databases
	Managing Your Workspace
	Managing Notes Databases

	Creating a Database
	Using an Existing Template
	Copying an Existing Database
	Creating a New Database
	Changing the Database Properties
	Basics on Database Building Blocks

	Chapter 3 The Notes Integrated Development Environment
	Introduction
	Elements of the Forms Integrated Development Environment
	Main Design Window
	Action Pane
	Design Pane

	Working With the Script Editor
	Design Pane Properties
	Searching Your Scripts
	Exporting Script Programs
	Importing Script Programs
	Special Script Editor Features

	Chapter 4 Designing Application Forms
	Using the Document Library Template
	Creating Sample Documents

	Using Forms
	Specifying Form Properties
	Giving the Form a Title
	Looking at Form Events

	Creating a New Field
	Performing a Test Run
	Sharing and Reusing a Field
	Looking at Field Properties
	Creating Design Elements for Subforms
	Removing Subforms

	Working With Layout Regions
	Creating a Layout Region

	Working With Collapsible Sections
	Creating a Collapsible Section
	Looking at a Collapsible Section
	Looking at the Properties of a Standard Collapsible Section

	Working With Tables
	Working With Buttons
	Creating a Button on the Action Bar

	Creating Hotspots
	Creating Links
	Defining Text Pop-ups
	Creating Buttons in Forms

	Chapter 5 Viewing the Database
	What Is a View?
	Changing an Existing View
	Creating Views
	Editing the View Columns
	Creating and Moving Columns
	Using Folders
	Here Again the Action Bar
	Looking at the Properties of Documents

	Using the Navigator
	Navigator Objects
	Adding an Action to a Navigator
	A Navigator Example
	Creating a Navigator
	Adding an Action to a Navigator Object
	Adding an Action Using LotusScript
	Testing a Navigator
	Including a Navigator in the View Menu

	Chapter 6 Programming in Lotus Notes
	Templates
	Programming in Notes
	Simple Actions
	Formulas
	LotusScript

	Using LotusScript Notes Classes
	Notes Classes
	Understanding Front-End and Back-End Classes
	Class Hierarchy
	Using the Object Browser

	Event Programming With LotusScript
	Programmable Objects
	Events
	Event Type and Sequence
	How Scripts and Formulas Are Executed

	LotusScript Programming Tips and Considerations
	General Suggestions
	Use Consistent Variable Names
	Using Script Libraries
	Catching Errors at Compile Time
	Improving Form Performance
	When to Use Formulas and LotusScript
	Using the Evaluate Function to Combine LotusScript and Formulas
	Making Field Value Changes Effective
	Using Validation Formulas and QuerySave
	Working With a Rich Text Item
	Prompting for User Input
	Guidelines for Presenting Dialog Boxes Using Formulas Versus Scripts

	Error Handling
	Using On Error and Resume Statements
	Creating an Error Handler for Debugging

	Using the Debugger
	How to Enable the Debugger
	Tracing Your Programs Without a Debugger

	External Tools
	The Notes API

	Summary

	Chapter 7 Using the LotusScript Extensions Toolkit
	What Is an LSX?
	Using an LSX
	Using the LSX Toolkit
	Overview
	What the LSX Toolkit Contains
	Considering the Toolkit Design
	Understanding the C++ LSX Class Framework
	LSX Design Decisions

	Creating an LSX
	Using LSX Data Types
	Using Data Type Descriptions
	Accessing LSX Class Method Arguments
	Accessing LSX Class Property Arguments
	Using LotusScript System Services

	Testing an LSX
	The LSXTEST Tool
	The LSXRUN Tool

	Deploying an LSX
	The LSX Runtime Environment
	LSX Installation
	LSX Registration

	Chapter 8 Using Agents
	About Agents
	Access Control
	Creating an Agent
	Setting Up the Agent
	Naming the Agent
	Scheduling the Agent
	Selecting Documents to Be Processed
	Specifying What the Agent Should Do
	Summary

	Chapter 9 Calendaring & Scheduling
	What Is Calendaring & Scheduling?
	Calendar Views
	Free-Time System
	Resources

	Programming With Calendaring & Scheduling
	LotusScript
	@Functions
	The Calendar View
	Date and Time Controls

	Chapter 10 Notes Workflow: An Example
	Creating a Database Using the Approval Cycle Template
	The Approval Cycle Template
	Using the Approval Cycle Template
	Performing a Workflow

	Approval Cycle Database: Design
	How Does a Form Flow?
	How Is the Approval Cycle Database Organized?

	Chapter 11 Working With Lotus Components
	Overview
	What Are Lotus Components?
	Who Are They For?
	Notes Application Developers
	End Users

	Lotus Spreadsheet Component
	Lotus Chart Component
	Lotus File Viewer Component
	Lotus Project Scheduler Component
	Lotus Draw/Diagram Component
	Lotus Comment Component
	Lotus Components Template Builder
	Using Lotus Components With LotusScript
	Adding Lotus Components to a Form Using LotusScript

	Setting and Modifying Properties
	Using Notes/FX With Components
	Notes/FX Example

	Linking the Spreadsheet and Charting Components
	Using NotesFlow Publishing
	Action Publishing

	Using LotusScript With Lotus Components Events
	Using the Lotus Components Template Builder
	Creating Your Own Component
	Creating a Distribution Pack

	Chapter 12 Notes Applications and Security
	Access Control List
	Roles
	Working With Roles
	Using @Functions in Roles

	Execution Control Lists
	Document Level Security
	Section Level Security
	Field Level Security
	Creating an Encryption Key
	Sending the Encryption Key to Other Users
	Encrypting the Field Contents

	Part 2 Extending the Reach
	Introduction
	Chapter 13 Domino: Architecture and Configuration
	Overview
	The Internet and the World Wide Web: An Introduction
	The World Wide Web
	Browsers
	Internet and Web Terminology

	Lotus Notes and the Web
	About the Lotus Notes Client Web Navigator Feature
	About the Domino Architecture
	Configuring the Domino Web Server
	Setting Up Your Notes Server on the Internet
	HTTP Setup
	Registering Web Users
	Starting and Stopping the Web Server
	Setting Up Security
	Domino Log and Cache

	Accessing a Domino Site
	Creating, Editing, and Deleting Documents From the Web
	Searching a Domino Site
	Reading and Responding to Notes Mail

	Chapter 14 Domino: Creating Web Applications
	Setting Up Your Web Site
	About Web Applications
	Introduction to Lotus Internet Applications

	Web Site Organization
	Designing Your Home Page

	Web Application Design Elements
	Web Forms
	Web Views
	Navigators
	Agents, LotusScript, and Actions
	@Function Formulas in Web Applications
	@Commands Formulas
	Working With Images
	Working With Attachments

	Adding HTML to Notes Elements
	HTML Code Syntax
	Creating an HTML Text Paragraph Style
	Adding HTML Attributes to an Editable Field
	Adding HTML Code to a View

	Creating Links
	Linking to Documents, Views, and Databases
	Linking to Forms and Navigators
	Linking to an External Web Site

	Domino URLs
	Domino Objects
	Domino Actions
	Domino Arguments

	Chapter 15 Domino: Sample Applications
	Overview
	An Application to Register Users Over the Web
	Basic Concepts
	Application Design
	Error Handling on Form New Account
	Processing User Requests
	Sending Error Messages to Web Users
	Handling Password Change Requests
	Summary

	Personal Agents — The Page Minder Agent
	Case Study: Millennia Multimedia
	NotesPump
	Search Site Form
	Agents

	Chapter 16 Accessing Relational Database Management Systems With Notes
	Data Resource Access
	About the Database Access Facilities

	LotusScript:DataObject (LS:DO)
	What Is LS:DO?
	When to Use LS:DO
	What Is ODBC?
	Using ODBC Connections
	Difference Between LS:DO and ODBC
	Software Requirements
	How to Register ODBC Data Sources
	USELSX Statement to Enable LS:DO
	Mapping Data Types Between RDB and Notes DB
	How to Trace and Debug LS:DO
	Creating Your Own LS:DO Test Application
	LS:DO Class Library

	The Millennia Multimedia Case Study: An Example Program
	The Millennia Multimedia Database Schema

	Using @DB Functions to Access Other Databases Through ODBC
	How to Use @DB Functions
	Using the Oracle LSX
	Architecture
	Object Hierarchy
	Using the Oracle LSX Classes

	ODBC Database Access Methods in Lotus Spreadsheet Component
	How to Use ODBC Database Access Methods
	Example: A Non-Interactive Query
	Example: An Interactive Query

	Chapter 17 Accessing Notes From Relational Database Management Systems and Query Tools
	What Is NotesSQL?
	Technical Advantages
	Structure

	When to Use NotesSQL
	Functionality
	ODBC Conformance Level of NotesSQL
	SQL Grammar Conformance Level of NotesSQL

	Software Requirements
	Mapping Resources Between an RDBMS and a Notes Database
	Connection String
	Table and View

	Mapping Data Types Between an RDB and a Notes Database
	Basic API Calling Sequences
	Example: Accessing Notes From Visual Basic
	Program Structure

	Chapter 18 High Volume Data Transfer With NotesPump 2.0
	About Lotus NotesPump
	NotesPump Enterprise Features
	Functions
	NotesPump Applications

	Architecture
	NotesPump Components
	NotesPump Server
	NotesPump Administrator
	DBMS Servers

	NotesPump Installation
	Installation Steps
	Start the NotesPump Server
	Terminology

	NotesPump Administration
	Configuration Documents
	Link Documents
	Link Options Documents

	Activity Documents
	Defining Common Areas of Activity Documents

	Admin-Backup Activity Document
	Admin-Purge Log Activity Document
	Direct Transfer Activity Document
	Polling Activity Document
	Replication Activity Document
	DPROPR Activity Document
	Scripted Activity Documents
	Using NotesPump Extensions
	LotusScript Extensions
	Example: Scripted Activity

	Activity Field Matching
	Administrator Views
	Log Views and Documents

	NotesPump Agents
	About Scheduling
	Running an Activity From the Command Line

	Common Gateway Interface for NotesPump

	Chapter 19 Accessing Transaction Systems Using MQSeries
	About MQSeries
	Where Does Lotus Notes Fit?
	Transactional Overview
	Applications for MQLink
	Technical Advantages
	Terminology

	MQSeries Link and Link Extra for Lotus Notes and CICS Link and Link Extra for Lotus Notes
	Overview

	MQSeries and CICS Link for Lotus Notes
	Application Development
	Transaction Flow

	MQSeries and CICS Link Extra for Lotus Notes
	Application Development
	Managing the Link Extra Process
	A Typical Host-Initiated Transaction

	The MQSeries Link LotusScript Extension (MQLSX)
	Setting Up Your MQLSX Environment
	MQLSX Classes
	Using the MQLSX
	Example: MQSeries Link for Lotus Notes Extension

	Chapter 20 Accessing Notes With the Notes C++ API
	Overview
	Types of Applications
	Contents of the Notes C++ API Distribution

	The Notes C++ API Architecture
	Built-In Data Types
	Common Classes
	C++ Class Hierarchy
	Error Handling

	A Guided Tour Through the API
	Setting Up an Application Profile
	Working With Databases
	Working With Documents
	Working With Views and Folders

	A Closer Look at Rich Text Items
	Creating Notes Server Add-In Tasks
	What Are Server Add-In Tasks?
	Program Structure of an Add-In Task
	Example: A Server Add-In to Compact Databases

	Appendix A Special Notices
	Appendix B Related Publications
	International Technical Support Organization Publications
	Related Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks

	Index
	IBM Redbook Order Form

